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Wave-front propagation in a discrete model of excitable media
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We generalize our recent discrete cellular autoni@®) model of excitable medigy. B. Chernyak, A. B.
Feldman, and R. J. Cohen, Phys. Rewb3:3215(1997] to incorporate the effects of inhibitory processes on
the propagation of the excitation wave front. In the common two variable reaction-diff(lR@nmodels of
excitable media, the inhibitory process is described byutteontroller” variable responsible for the resto-
ration of the equilibrium state following excitation. In myocardial tissue, the inhibitory effects are mainly due
to the inactivation of the fast sodium current. We represent inhibition using a physical model in which the
“source” contribution of excited elements to the excitation of their neighbors decreases with time as a simple
function with a single adjustable parameterrate constaint We sought specific solutions of the CA state
transition equations and obtaindabth analytically and numericallithe dependence of the wave-front speed
¢ on the four model parameters and the wave-front curvatuiBy requiring that the major characteristics of
c(«) in our CA model coincide with those obtained from solutions of a specific RD model, we find a unique
set of CA parameter values for a given excitable medium. The basic structure of our CA solutions is remark-
ably similar to that found in typical RD systengsimilar behavior is observed when the analogous model
parameters are varigdMost notably, the “turn-on” of the inhibitory process is accompanied by the appear-
ance of a solution branch of slow speed, unstable waves. Additionally, wiesmall, we obtain a family of
“eikonal” relations c(«) that are suitable for the kinematic analysis of traveling waves in the CA medium. We
compared the solutions of the CA equations to CA simulations for the case of plane waves and (tinge#r
waves and found excellent agreement. We then studied a spiral wave using the CA model adjusted to a specific
RD system and found good correspondence between the shapes of the RD and CA spiral arms in the region
away from the tip where kinematic theory applies. Our analysis suggests that only four physical parameters
control the behavior of wave fronts in excitable media.
[S1063-651%98)12706-X

PACS numbes): 87.22~q, 82.20.Wt, 82.40.Ck, 02.76¢c

[. INTRODUCTION in the medium(both processes are believed to be important
in cardiac fibrillation). An adequate description of the basic
Traveling-wave patterns in excitable media have beemphysical mechanisms controlling these processes has proved
studied extensively using continuous reaction-diffusionelusive via analysis of RDE solutions, though recently im-
equation(RDE) models and discrete cellular autom&@A) portant progress has been md@e-6]. To be suitable for
models. The development of CA modeling approaches hastudying complex wave phenomena, the solutions of the dis-
been primarily motivated by their relative computational ef-crete CA equations should be in good correspondence with
ficiency and ease of implementation on computgh®ugh those of the RDEs for a given physical system. In a recent
for some excitable media the discrete description may alsarticle [7] we demonstrated that it was possible to quantita-
be a more appropriate representation of the sy$tdm CA tively link the traveling-wave solutions of a general class of
simulations are an attractive alternative to solutions ofRDE models to those of a simple but appropriately con-
coupled nonlinear RDEs, since these equations are often anstructed CA model in a physically self-consistent way. This
lytically intractable and usually too computationally burden-analysis was valid for trigger waves, which arise in the limit
some to allow systematic numerical exploration of a syswhen the recovery and other inhibitory processes are
tem’s parameter spagthis is particularly true for models of switched off. In this paper we establish the more general
myocardial tissug[2]). This aspect of CA modeling has correspondence for the case of solitary wave fronts, which
caused the intuitive appeal of such models to receive mucimcorporate the effects of inhibitory processes on excitation.
less attention. CA models in which the parameters have clearhe demonstration of this correspondence represents an im-
physical interpretations can also be useful vehicles for undeiportant step toward the development of quantitatively reli-
standing complex behavior, such as the “meandering” ofable CA models of continuous media.
spiral waves and their interaction with spatial heterogeneities Recent studies of complex wave patterns such as rotating
spiral waves in CA models have demonstrated many quali-
tative and sometimes quantitative similarities between the
* Author to whom correspondence should be addressed. Prese@A solutions and the numerical solutions of specific RDEs
address: Massachusetts Institute of Technology, 77 Massachusef8—10]. This correspondence strongly suggests that in many
Avenue, Office E25-317, Cambridge, MA 02139. FA%17) 253-  cases these two representations of excitable media may be
3019. Electronic address: afeldman@huhepu.harvard.edu “dynamically equivalent,”which means that the systems
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support the same wave patter(esg., plane waves, target back and the partially refractory wave tail. These will be the
waves, and spiral wavisexhibit similar behavior, and have subject of future work.

similar responses when the analogous model parameters are This paper is divided into seven sections. In Sec. Il we
varied. This implies the existence of a smooth mapgimgg ~ discuss traveling solitary waves in RDE modidse Eqs(1)
necessarily stationayjpetween the two systems. We previ- and (2) below] and introduce the specific relationships
ously found strong evidence of such equivalence for triggepeeded for analysis of our CA model solutions. In Sec. Ill we
waves using a simple three-parameter CA model of a twodeneralize our CA model for trigger wavgg] by modifying
dimensional, isotropic mediurfi7]. This analysis demon- the CA state transition equations to incorporate the. temporal
strated the correspondence of the CA dependence of tH‘gIIoff_of the source currents in the wave frpnt region. The
wave speed on the wave-front curvature with that of a  following two sections discuss the one-dimensiosD)
general class of RDE models. Here we generalize the Origis_olltary front and 2D plang-wavgffront solutions in the modi-
nal CA model to represent solitary wave fronts and therfied model(a proof of the instability of the slow speed solu-
examine in detail the changes @f«) as the major CA pa- tion branch for 1D CA solitary fronts is given in Append]x
rameters are varied. These changes are then compared Ay [N Sec. VI we derive the specific equation determining
those found in simple RDE models under similar variationsth® dependence af on « and analyze its solutions at large
of the analogous parameters. We found remarkable similar@nd small curvatures. We compute the “critical curvature
ties between the structure of the CA solutions and that typil? the kinematic approximation, which is the maximal cur-
cally found in the RDES, including the appearance of a soYature for a Stab'}{ propagating, continuous wave front, and
lution branch of slow-speed, unstable waves. This equivaleri!SO analyze the “eikonal” relation, which is the linear ap-

solution structure allows us to establish a quantitative mapProximation toc(«) in the region of smalk. Finally, in Sec.
ping between the two representations of the system. VII we adjust the CA model parameters to represent a spe-

Our results are applicable to any physical process thatific RDE system and compare Fhe CA spiral wave solution
reduces the magnitude of the excitatory current in the wavel© that obtained from the numerical solution of the RDEs.
front transition zone during the front’s characteristic transi-
tion time. In myocardial tissue, the major inhibitory process Il. WAVE FRONTS IN CONTINUOUS RDE MODELS
is the inactivation(“turning off” ) of the fast Nd current

[11]. (The two-variable reaction-diffusion models conS|dereddiffusing quantity can be described by two variableandy

in this article are only approximately applicable to myocar- . e . ; S
dial tissue since the fast Nacurrent’s contribution to the that qbey a set of reaction-diffusion equations given in di-
mensionless form by

source term in the diffusion equation for the cell transmem-
brane potential is also activatédurned on”) with nonzero ou
time constant. The extent to which this contribution can be —=V%u+f(u,v), 1)

A minimum model of an excitable medium with a single

approximated as steady state, as well as the effect of this Jt

approximation on the values of important traveling wave pa-

rameters, requires further clarificatiphl]. See Ref[12] for ‘9_” —eg(u,p) @)
additional discussion of the limitations of two-variable RDE at o

models of myocardium For clarity, however, our results are

presented for a generic recovery process. The required modivhere V2 is the Laplacian operator in spatial coordinates
fication of our original CA model involves the introduction (X,y,z), t is time,u represents the “concentration” of the
of a monotonically decreasing function to describe the falloffdiffusively propagating entity, and is a recovery variable

of excitatory source current with time in the wave-front tran-that controls the local recovery of excitability. The quantity
sition zone. The basic featuresaffx) in the modified model ¢ is defined as=r,/1,, wherer, and 7, are the charac-
do not appear to depend on the specific choice of this functeristic time scales associated with the evolutiouaindv,
tion, so for simplicity we performed the analysis using arespectively. Usually <1, which corresponds to fast exci-
simple linear falloff with a single adjustable parameter: atation and slow recovery. The functioféu,v) andg(u,v)
recovery rate constant. To adjust the CA model to a spe- in Egs.(1) and(2) describe the nonlinear local kinetics of the
cific RDE system, we calculate and the three other CA system. For future reference, we shall call the function
parameter values by requiring that four major characteristic§(u,v) the (reactior) source function and-f(u,v) the (re-

of ¢(«) coincide in both representations of the medi(for action source current. To restore dimensions, the transfor-
systems in which the RDEs are only approximately knownmationst—t/7, and x—x//Dr, should be applied, where
measured values may be prefeprethese characteristics are D is the diffusion coefficient ofi.

the trigger plane-wave speed, the trigger wave critical curva- The basic features of traveling waves in RDE systems can
ture (the curvature at whicle=0), the slopedc(0)/d« for be seen via the analysis of a typical 1D solitary pulse solu-
trigger waves, and the speed of a plane solitary wave, whiction. We shall consider the familiar, simple model with ki-
incorporates the correction to the trigger wave value due tmetic functionsf andg given by[13,14]

the inhibitory process. This yields a set of four equations

with a unique solution for the four CA parameter values. Our f(u,v)=—{i(u)+v}, 3
results strongly suggest that this procedure is sufficient for
the correct physical representation of the excitation wave g(u,v)=Llu—wv, 4)

front. The matching of additional characteristics of the RDE
solutions will be required to represent the deexcitation wavevhere the functioni(u) is the piecewise linear current
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A (@ “excited state” valueu=u,. For ¢ small, the recovery
u.=0, U4=1 variablev varies slowly during the rapid upstroke wfand is
displaced from its resting value_ by a small correction
evq, Wherev, is a constant depending on the=0 solution
[15]. On the plateau of the pulse, the spatial and temporal
derivatives ofu are small andu approximately follows the
slow evolution ofv adiabatically, so at each phage u(¢)
s3 is given by the solution of (u(¢),v(£¢))=0. Whenv ap-
proaches a specific maximum value, the deexcitation
wave-back transition takes place. Following this transition,
the system slowly relaxes back to the equilibrium state
(u_,v_). This relaxing region is called the wave tail. We
shall focus our subsequent analysis on 1D and \2&ve
fronts and consider propagation only in fally recovered
medium in its equilibrium state.
(b) Figures Za) and Zb) illustrate the deviations from the
1.6 trigger wave limit in the wave-front transition region near
14 £=0 for the 1D pulse. Figure(d) plots theu value versus
back front i . .
Wave 1o the phaset of the wave, with zero phase defined to be the
tail i front crossing au=u, . The length scalé ; of the wave-
u—r? front transition region is a quantity of ord&/cgy. The re-
0.8 covery effects due to nonzero result in corrections in a
. region extending approximately L o< ¢<L, that reduce the
pulse speed relative to that of the trigger wéthe reduction
. is ~5% for the pulse in Fig. 2 The primary cause for this
U — 02 reduction is seen in Fig.(B), which plots the local values of
the source current-f(u,v) for the pulse in Fig. @). The
important feature of this plot is that whensufficiently ex-
ceedsu, , the magnitude of the pulse source currémld
curve diminishes relatively to that of the trigger waot-
phase ted curve and the deviation grows a@grows in magnitude

FIG. 1. (a) Piecewise linear current sourtf@) given by expres- until u approacheﬂ+ =1. Thls. effective redu.ctlon in ampli-
sion (5) and (b) 1D solitary pulse solution of Eqgl) and (2) for tude of the excitatory source in E(.) results in the reduced
f(u,v) andg(u,v) given by Eqs(3) and (4) with a specifici(u). ~ SPeed, sincec, scales roughly as the square root of the
The parameter values used for the pulse were-30.0, s,  Source amplitud¢16,17. We note that in both the trigger
=09, s$,=30.0, u=0.12, ¢=10, and £=0.06 (see Ref. Wave and pulse cases, th_e source qurren(u,v) changes
[13]). In (b), the behavior ofi andw is shown as a function of the SIgN at(and near, respectivelythe point whereu=u, and
phase&=x— c,t, wherec, is the propagation speed. The direction PECOMES “excitatory,” meaning that its contribution in Eq.
of propagation is indicated by the arrow. The wave front, wave(1) has the same sign @si/gt>0. We now consider a snap-
back, and wave tail are also indicated. All quantities shown areshot of the front by setting=0 in §=Xx—cgt. At points on
dimensionless. the frontu=u(x) with u values larger that that of the front’s
inflection pointu; (u, <u;<u,), the source current must
overcompensate for the diffusion of since d?u/dx?<0.

T . The source currents in this region of the front may be
i(uy=9 u—s,u when u;<u<u,, u=s,u, (5 thought of as the sources of the diffusive flux to regions
below the inflection point wherel?u/dx*>>0 (sink9. The
difference between the pulse and trigger wave source current
values increases with the distange-x, wherex; is the x

A plot of i(u) is shown in Fig. a). The constants;, S;,  coordinate of the inflection point. In terms of local tirfeet-
ands; are all positive quantities. The curreift) has three  tingx=0 in £&=x—ct), this deviation can also be viewed as
consecutive roots_, U, , andu, , with the middle root,  an increasing function of théscaled time elapsed since the
playing the role of an excitation threshold. Theoordinates  crossing at=u; . Finally, we note that as approaches., ,

of the beginning point and end point of the negative slopehe pulse source current again changes sign and assumes
region areu;=u/(s;+s,) and u,=(u+s3)/(s,+s3), re- small positive (deexcitatory values, while for the trigger
spectively. A 1D solitary pulse solution of this system iswave it approaches zero asymptotically via negatesita-
shown in Fig. 1b), which depicts the variation ai andv tory) values asé— —. The above features of the source
with the phas&=x—ct for a pulse with constant speeg. currents in the front transition region form the physical basis
The resting stateu_, v_) of the system ig0, 0). In the  for our CA model of inhibitory effects discussed in Sec. Ill.
trigger wave limit €=0), the wave profile is described by = The plane-solitary-wave speeg in the medium[Egs.

the rise ofu from its “resting state” valueu=u_ to its  (1)—(5)] depends on the specific value of the thresha|d
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(@) Cole)=Co— xe. ©)

Trigger wave whereC,, is the trigger wave £=0) speed and the constant
(e =0) x depends on the threshold, (and all other temporarily

fixed paramete)s The method for computing the trigger
: wave speedC, is discussed in several recent papers
06+ —————— X [16,17,19-22 Approximate analytical expressions for

E i Direction of were reported in Refg§4,23] for specific RDE systems.
‘f 0.4 Propagation In two dimensions, the local wave speed additionally de-
] pends on the front curvature In the limit =0, the normal
1 componentC of the trigger wave velocity is approximately
0.2 )
o given by[23,24]
1 Use
0+ CZCo+DK, (7)
35 3 25 2 15 -1 05 0 05 1 15
phase whereC, is the trigger plane-wave speed for a fixed, D
is the diffusion coefficient ofi, and the curvature is de-
fined to be negative for convex wave fronts. This expression
(b) is valid for small to moderate curvaturfks] and is derived
0'2; under the condition that the wave front's spatial profile is
0.1 /‘\ guasistationaryi.e., it does not change appreciably over the
5 — front transition time scal&,/Cg). The linear approximation
= 0.1 (7) is often referred to as the “eikonal” relation for the me-
el ] dium [25,26. Generally,C(x) is nonlinear at large curva-
b '0.2f 5 - 0 06 .. . .
= ] y E=U “a tures and the critical curvature,, corresponding to vanish-
g 034 | ing trigger wave speed can be rigorously defined by
g 0.4 requiring thatu andv be stationarygu/dt=0, anddv/at
£ .05 =0 [7]. Whene is nonzero, the dependence of the wave-
B .06 <" Trigger wave front speedc on curvature is still linear for smakt, but the
07 ] W (e=0) interceptcy and the slop®’=dc/d«| .-, depend ore. Us-
= ing an elegant analysis, Zyk¢27] derived an expression for
0.8 e c(«) for small k and smalle, with the slopeD’ given by
35 3 25 2 -15 -1 05 0 05 1 15 [12]
phase
&
FIG. 2. The wave-front profiles(¢) (a) and(b) the local source D'=D| 1+ £X , (8)
currents—f(u,v) for the 1D solitary pulse in Fig. (b) and the Co

trigger wave € =0) solution. The middle roat, ofi(u) and theu . . .
valueu=u; of the front’s inflection point are indicated. The recov- W_he“?X IS th? _same constant as in E() and D IS th,e
ery process results in small correctionsuand f(u,v) over the dlff.USIOI’] coefficient ofu. A more Qe”efa' expression fm.
front transition zone. At sufficiently large negative phase values, th&/alid for all & <eye. (corresponding to stable pr0pa}gaﬁ|0n
difference between the magnitudes of the pulse and trigger wav®/as recently found by Pertsov, Wellner, and Jal|28:
source currents increases with the magnitudé. dthis reduces the ,

pulse propagation speed by about 5% from the trigger wave value. D'=D{1-(e/co)(dco/de)}, ©)

where co=cp(¢) is the full dependence of the plane-wave
the slopess,,s,,Ss, the coupling constar§, and the small speed one. Since the derivativeic,/de is negative and
parametere. For our present purposes, it suffices to fix turns into negative infinity at = ,,e, We see that the slope
S;, Sp, Ss, and{ and consider the variation of the propa- D' is a growing function ok that diverges at =& ce.

gation speed withu, ande. For a given value of, smaller At large curvatures, the functior(«) is nonlinear just as
values ofu, produce faster waves, while for fixed threshold in the trigger wave case. However, the relation between
u, , faster waves are generated at smaller values dfypi-  andx expressed ag= «(c) for convex fronts has an extre-

calcg(u, ) andcy(e) for excitable media are shown in Figs. mum at the point £.;,¢;). This point is presumed to repre-
4(b) and Fb), respectively. In both cases, the plane-wavesent the point of marginal stability separating the stalole (
speed decreases monotonically from a maximum value to &c;) and unstable ¢<c;) curved wave-front solution
“knee” value, below which the wave is no longer stalilee  brancheqd29]. The quantityx., is called the critical curva-
knee is the point wherdc,/du, or dcy/de becomes infi- ture for a continuous wave froriin contrast to a front with
nite). Rinzel and Keller{18] obtained similar dependences an exposed wave edgdt is important to note that propaga-
for a simple piecewise lineda u) and proved that the slow tion of a front with critical curvaturec., takes place with a
speed solutions below the knee were unstable. For a givemonvanishing critical speed;. As e increases) .| de-
u, and smalle, the functioncy(e) for 1D solitary pulses or creasesthe marginal stability point moves towards the speed
2D plane waves can be approximated far from the knee a&xis) and must vanish whes reaches . Since this is the
[19] value at which plane waveskE0) become marginally
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stable[29]. We note that this definition of the critical curva-

ture assumes steady-state conditions and thus does not de- ~ Un+1(X)=Up(X)+[1=Uy(X)]O
pend on the specific history of front evolution from which
the configuration .;,c;) arose. These conditions exist
when a steadily rotating spiral wave front is attached to the
smallest possible impermeable, circular hohden the hole
radius is too small, the spiral front detaches due to its inabil- ) ) . ) .
ity support curvature values larger thaiy|) [29]. Gener- whergn is the’ dlscr_ete time mde_;@( ) is the HeaV|s.|d.e step
ally, c(«x) determined from the evolution of a small excited function, w(x’ —xj is the weighting function describing the
circular domain will depend on the initial conditions, such asrélative contribution of the neighbor at to the excitation of

the amplitude and duration of an externally applied stimulusth® €lement ak, andK;(x) is the excitation threshold of
and the specific definition of the wave-front position. How- the €lement ax at time stem+ 1. Note that our randomiza-
ever, our analysis shows that as the wave front propagaté?” of the lattice means that a complete simulation must
further away from the source, the instantaneous speed afgcorporate an ensemble of systems that produce the expec-

curvature values approach the history-independér) as-  tation value ofU,,;(x). Thus the complete form of E¢L1)
ymptotically ask goes to zerd11]. must incorporate the ensemble averaging of the right-hand

side of Eq.(11) at each time step. For one particular realiza-

tion of the lattice randomization, a trigger wave solution of

Eq. (11) corresponds to a moving spatial discontinuity in the
In this section we generalize our recent CA model forU field.

simulating trigger wave$7] in two-dimensional, isotropic ~ We simulate the effect of the “recovery” process on

media to incorporate the effects of an inhibitory process orPropagation by introducing a fact®&S<1) under the inte-

propagation. In the CA model, the medium is decomposedral in Eq.(11) to describe the decrease of an excited el-

into squares with siddx, whose positions on the lattice are €ment’s “source intensity”(its ability to excite its neigh-

randomized according to the Markus-Hd8§] scheme in borg with its phaseT. This modification is suggested by our

order to smooth out the discreteness of the lattice. Each el€arlier analysis of the RDE trigger wave and solitary pulse

ment is assigned two internal parameters, an excitatiogource currents in the front transition zone. This revealed

thresholdK and an interaction circle radil®, and also two that the excitatory source current of the pulse reduces with

variables, a binary state variable and an internal phasg,  time relative to that of the trigger wave, witk=0 set by the

which tracks the time elapsed since the last excitation of th@assage of a suitably defined wave-front edge. This effect is

element. Each element is also assigned an internal parameféfmally described in the CA model by introducing a phase-

Te, the exciting state duration, which is the amount of timedependent, continuous-valued state variable=U(x,T),

an excited element contributes to the excitation of its neighwhich without loss of generality can be factorized into the

bors (defined as elements located inside its interactiorPriginal binary variableU=U(x), and a phase-dependent

circle). The value ofT¢ for CA trigger waves must be infin- source intensitys(x, T(x)) describing the local falloff of the

ity since these waves “propagate” infinitely long at zero source intensity. In a uniform medium, the source intensities

speed.(In RDE models, the analogous property is the presS depend only on the local phase of the eleméis), so

ence of nonzero excitatory source current overuhegion the expression for the total sour@(x) becomes

delimited byu;<u=<u,, which locally requires an infinite

transition time to traverge The stateU of an element can

assume two valued)=0 andU=1, which correspond to Qn(X)Ef w(x' =x)U(Xx")S(T(x"))dx’, (12

the resting and excited states, respectively. The CA transition

rule states that th&th element switches from the resting

state to the excited state at the next time sképwvhen the  where the functiorS satisfiesS(0)=1 andS'(T)<O0 for T
“total source” Qy contributed by its neighbors equalsr  =0. For simplicity, we consider a simple one-parameter
exceedsits threshold value, (the “sink™), that is, when  family of functionsS,=s(yT), wheres( ) is a fixed mono-
tonically decreasing function of a dimensionless argument
_ that specifies the model of recovery under consideration. The
= > wU;=Ky, (10) . . ; . )
neighbors constanty is a recovery rate with a dimension of inverse
time. We explored several functiorfyT) and obtained
where the sum represents the total soutte summation very similar results.
index j runs over all elements in the neighborhood of ele- Since we are currently only interested in the behavior of
mentk), andwy; is a weighting distribution determining the wave fronts, we choose the simplest representation of the
relative contribution of elemeijtto the excitation of element wave back: The transition out of the excited state is a
k(0=w,;<1). As in Ref.[7], we shall study the simplest “phase” wave controlled solely by the local dynamics
case withw, ;=1 for all elements. For this realization of the (phase€T) at pointx. In this case, the transition to the resting
model, the sourc®, for trigger waves is always equal to the state occurs at a particular phabe T,(x), whereT(x) is
number of excited elements inside the neighborhood circlethe local duration of the pulse plateau. It follows that the
The sum in Eq(10) is an exact representation of an inte- exciting state durationlg(x) must satisfy Tg(x) <Ty(X).
gral on a discrete lattice. This allows us to write the generalThe coupled equations describing the state transitions in the
CA transition rule for trigger waves in the compact form  CA medium are thus

—Kh1(X)

: (11)

+ f w(x' —x)U(x")dx’

Ill. CELLULAR AUTOMATA MODEL WITH INHIBITION
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FIG. 3. Geometry for calculating the propagation spegdf a
1D solitary front in the CA modefthe underlying grid with spacing
Ax is omitted. The neighborhood of poin© is the segment
[—L,L], whereL is the neighborhood “radius.” The wave front
edgeMN shifts to the pointO at the next time stepjt when the
total source strengtl® provided by the excited elementsross
hatched equals the excitation threshold of the element at point
0.

Uns1() =Unp(X) +[1=Un(X) 10 (Qn(X) =Ky 1(X)),
13

Un+1(X)=Up (0O (Tp(x) =T (X)),

whereQ,(x) is given by Eq.(12). A typical 1D U solitary
pulse in a uniform medium traveling at speggdwill have a
rectangular shape with unit height and widtgT, when
viewed in a reference frame traveling with the wave.

(14)

IV. CA SOLITARY WAVE FRONTS IN ONE DIMENSION

The dynamical equationd3) and(14) can be treated ana-
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S=0. The second case is identical to settifg=1/y. We
also assume that,=« for all elements, so that there is no
wave-back transition. For both cases®fEq. (12) for the
total sourceQ becomes in dimensionless form

Q=ﬁxm 1+ 1—§> dx,
¢o Co

where Q=QAX/L, Co=CoAt/L, x=—x'/L, y=yAt, and
we have used the fact thag= —cyAt. In case(i) the upper
limit of the integralx,,=1 and in casdii) the upper limit is
determined by the requireme8t0, which yields

(16)

. 1 if co=y/(1+7y)
Xm=1. (17
Cco(1+vy)/vy otherwise.

The dependencey (K, y) is found by calculating the integral
in Eq. (16) and using the excitation conditiofl5) in the
form K=0Q, whereK=KAx/L. In the case with the con-
straintS=0 we find

Y |
1+’)/_CO_E CO+6_
0

if Co=7v/(1+7)

Y
Il

Co .
— otherwise.
2y

(18

lytically for the case of 1D solitary fronts. The notation is One can check that the two pieces on the right-hand side of

introduced in Fig. 3. The resting element at pdinis chosen
to be the element excited at the next time sédp The ap-

Eqg. (18) match smoothly atcy,=7y/(1+7). For the case
without the constraint, the expression in the first line of Eq.

proaching wave of excited=1) elements is shown as the (18) determines the entire relationy(K,y) for all ¢,

cross-hatched region. The element at p@ngwitches to the
excited state and the wave froltN shifts by the distance
CoAt when the argument of th® function in Eq.(13) be-

comes positive. This excitation condition is the marginal
case where the total sour€¥x) exactly equals the threshold

valueK(x) at pointO:

Kzsz w(x")U(x")S,(T(x"))dx". (15

For a wave steadily propagating with spegg the phase
T(x') at a pointx’ situated at a distanc# behind the front
is given by A/c,. SinceA can be written as\ =[x’ —Xg|,

=5/(y+2).

The attractiveness of this simple one-dimensional ex-
ample is that we readily see that for fixeq the threshold
and the speed are linked by a simple equafipid,c,) =0,

wheref is an explicit function depending oia as a param-
eter. In casei), whenS is allowed to be negative, we obtain
the family of hyperbolas shown in Fig(@ (each curve is

labeled by itsy value. In Fig. 4b) we show the analogous
plot obtained for a RDE model with kinetic functions similar
to Egs.(3)—(5) [31]. These curves are similar to those origi-
nally obtained by Rinzel and Kelld18], who proved that
the slow speed solutions below the knee were unstable. It is

wherex, is the coordinate of the edge of the front, we havebroadly believed that this is true in the general case of a

T(x")=Alco=(Xg—X')/cg. For a uniform medium with

current i(u) with three nodes[32]. In Appendix A we

givenw and S, Eq. (15) establishes the relation between present a formal proof that the lower branch is also unstable

the thresholK, the recovery rate constapt and the propa-
gation speed.

We now seek the functiorcg(K,y) for the simplest
weighting functionw=6(L2—x'2) (a flat distribution over
the interval[ —L,L] with unit heigh} and a linear depen-
dence of the source intensity on the phasel. We shall
consider two casesi) a function S(T)=1—+T (and Tg

in our CA model. The basic structure of the RDE and CA
solutions is remarkably similar. This correspondence is also
evident in the plot o, versusy for fixed threshold values
K. This family of curves and the analogous family for the
RDE model are shown in Figs(& and 5b), respectively.

The intuitive appeal of our CA approach can be appreci-
ated by a comparison of the dimensionlegéK,y) in Fig.

=), which may become negative, thereby severely inhibit-4(a) with that in Fig. 6, which is similar to Fig. (&), but

ing the wave-front transition for large or slow speed, and
(i) a piecewise linear functio®(T)=(1—yT)O(1—T),

obtained with the restrictiol5>0 [case(ii)]. While each
stable branchincluding the knee pointremains unchanged,

which vanishes folf = 1/y and thus satisfies the requirement the behavior of the slow speédnstable branches in Fig. 6
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FIG. 5. (a) Dependence of the 1D solitary front speegl on
FIG. 4. (a) Dependence of the solitary front speﬁ‘:}gon excita-  recovery rate constarit for selected fixed threshold valués (la-
tion thresholdK for selected fixed recovery rate constaptgla- ~ Peled on each curyén our CA model[case(i), with no restriction
beled on each curyén our CA model(a) [case(i), with no restric-  ©N the sign ofS] and(b) the analogous platy(¢) for the same RDE
tion on the sign ofS] and (b) the analogous plato(u, ) for a RDE model as in Flg: ). In (b), the u, values are labeled on each
model similar to the systert8)—(5) [31]. In (b), the ¢ values are curve. The solutions on the lower branches are unstable.
labeled on each curve. The slow-spgédshedl solutions on the ) . L .
lower branches irfa) represent unstable CA wave-front configura- @llowed us to ascertain the physical source of this instability
tions (see the proof in Appendix A The instability of the slow- 1N the RDE system without resorting to more formal math-
speed solution branch is broadly believed to be a general feature &matical analysis.
continuous RDE systeni48,32.

. o . . . . V. CA PLANE-WAVE FRONTS
is qualitatively different. To see the physical meaning of this

discrepancy, we first point out that when the plot of the re- The geometry for computation of the plane-wave speed in
action source current in Fig(1d) for the RDE solitary pulse two dimensions is shown in Fig. 7. The overlap of the do-
is extended to large negativie we find that the wave-back main of excited elements with the circle is outlined in bold.
transition is accompanied by large, posititdeexcitatory =~ The wave frontM NP Q shifts to the poinO at the next time
currents. If we interpret the CA inhibitory process as a re-step when the total sourc® supplied by excited elements
covery process responsible for initiating a wave-back transiequals the threshold valu¢ at pointO in accordance with
tion, then casdi) for S would be the appropriate physical Egs.(12) and(13). The new wave-front position shifted by
model, as negativ8 could be associated with the wave-back the distanc&yAt after one time step is shown by the dashed
transition. For the slowest-speed unstable solutions in Figine. We again assume a linear falloff of the local source
4(a), regions with negativéS intrude in the CA interaction intensityS(T) and omit the restrictioi®=0. The expression
region. Due to the remarkable similarity of the RDE and CAdetermining the total sourc€ is found by integrating
slow-speed solution branches in Fig. 4, we infer that for theS(T(x)) with the weightw(p) over the region outlined in
slowest-speed unstable RDE waves, the wave-back transitidyold in Fig. 7. Since we assume steady propagation, the local
must interfere with the formation of the front. Such solutionsphaseT of elements on the circular atbatchedl is equal to
must undoubtedly be unstable. Our CA model’'s simplicityAy($)/cy, Where Ay is the distance from the wave-front
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FIG. 6. Dependence of the solitary front spedon excitation

thresholdK for selected fixed recovery rate constaptdabeled on
each curvein our CA model with the restrictio’s=0 [case(ii)].
The knee positions are identical to those in Figp)4but the slow
speed branches are qualitatively differésge the tejt

edge MNPQ The local phaseT(x) is thus given by
[ p cos(p)—coAt]/cy. The excitation condition in dimension-
less form can be written as

w(;;&o>{ .p COS—Cqy
1=
0

1
k=a-4 [ wipyp op 2%,

Co CO

(19

where Q=2QAX%*R? and K=2KAx?/R? are the rescaled
total source and threshold, respectively, anao
=CoAt/R, p=p/R, andy=yAt. As can be seen in Fig. 7,
the upper limit of the integral iso(p;Co)=arccos€y/p).

=0
Plane Wave
© /—)(—\Q
Sourcing
Region
" !
P
Q CO At

-3

FIG. 7. Geometry for calculating the plane-wave spegih the
2D discrete model with circular support €p<R) of the weight
functionw=w(p) (pointO is the center of the neighborhoodhe
underlying grid is omitted. The wave froMINPQ shifts to the
point O at the next time stept when the total source strength

provided by excited elements inside the region outlined in bold an

given by Eq.(12) equals the excitation threshokdat pointO. The
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FIG. 8. Renormalized knee thresholI&K ., versus the recov-
ery rate constany for 1D solitary front and 2D plane-wave fronts.
These curves are neutral stability curves that divide the plane into
stable and unstable front solution regions. The curves may also be
interpreted as representing the maximum recovery rate constants
Ymax @s a function of the threshold. [Wave fronts with a giverk
can propagate only i< S/max(f().]

Using the specific case(p)=0O(1—p), we interchange the
order of integration and directly evaluate the integral

Y
1+§

N < 2V1-c?f2. .,
R=20(1+%)———=—| 37+

Co

] . (20

where Q) = arccosc,. This is an implicit equation determin-
ing the dependencey(K, y) for 2D plane-wave fronts.

For 2D plane-wave fronts, the family of curveg(K) for
varying y is similar to that obtained for the 1D ca§Eig.
4(a)]. In the (K, co) plane, the knee coordinates trace out a

neutral stability curve ¥ is the parametgrthat divides the
plane into regions with stable and unstable wave-front solu-
tions. For the 1D and 2D cases, we can find this parametri-
zation explicitly by finding the extrema of the equation

K(Co,y), which gives

6knee= \! 3’/(3’+d+l),

whered is the dimensior{1 or 2). The knee speeds increase
monotonically withy and approach unity asymptotically as

y—0. The monotonic growth of,.d y) is physically sen-
sible since for a fixed threshold an increase in the knee speed
is needed to compensate for the increase in the recovery rate
3/ so thatQ=K is satisfied. This is because the decrement of
sourceyT is proportional toy/cy. Expression21) allows us

to find the neutral stability curves in the},(IZ) plane by
simply substituting into Eq(18) (1D) and Egq.(20) (2D),
respectively. These curves are plotted in Fig. 8. WKeis
treated as the independent variable, the curves in Fig. 8 can

(21)

%iso be interpreted as representing the relagieny, . (K),

new position of the wave front is shown as the dashed line. ThVhich expresses the fact that for eaChthere is a maximum

angle definitions for integration are indicated.

permissible recovery rate constant .y for a stable front.
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FIG. 9. Dimensionless plane-wave spegg\t/AX versus re- R
covery rate constany for selected(high) excitation threshold&
(low excitabilitieg. The curves are the theoretical values obtained v
using Eq.(20) and the dots are the averages obtained from simula-
tions performed on a lattice witR/Ax=12 and with a correction FIG. 10. Geometry for calculating the propagation speed a

for the discreteness of the phabésee Appendix B The error bars  convex wave front in the CA model with a circular support<(p
represent one standard deviation and reflect the fluctuations causetR) of the weight functionw=w(p) (point O is the center of the
by the lattice randomization. support regiop The underlying grid is omitted. The wave front
ABCDE shifts to the pointO at the next time stepjAt when the
For the 1D case, these maxima correspond to the knee poirfigial source strengtl®Q provided by excited elements inside the
of the curves shown in Fig.(8). region outlined in bold and given by E¢L2) equals the excitation

The stable branches 6( a/) for 2D plane waves given by thresholdK at point O. The new position of the wave front is

. N N shown as the dashed line. The wave front is locally approximated
Eq. (20) for selected fixed thresholds are shown in Fig. 9y 5 circle with radiug centered at the poir®’. The angle defi-

along with the results of CA simulatioridlots. For smally,  nitions for the integration are indicated.
these curves may be approximated with the same precision

as in the RDEJEQq. (6)] by a function 80(3/)2(30—)(’5/, responding to concave and convex, respectively. The domain
whereC, is the trigger wave speed and the constaritand of validity of the locality assumptioiithe approximation of

~ A ) ] the front as a circlgis —< =<1 and is discussed in detall
Co depend on the threshold. The simulations were per- iy Ref [7]. In the figure, the domain of contributing excited

formed on a 2D lattice with a periodic boundary condition in gjements to the excitation of the element at pa@nts out-

one direction(a cylindey. The CA elements were all as- jined in bold and the new wave-front position after one time
signed identical radiR and threshold&. We computed the step is shown by the dashed curve. The dimensionaless
speed of the plane waves by tracking the position of the hysical parameters and 5 are linked to the integration
wave-front edgéaveraged over random seed point locatjons pa%ablespb ) via the e>7<] ression for the uantgilt _
after each time step. The points in Fig. 9 are the averagé o'P /R=,+ 'R P q y
speeds and the error bars correspond to one standard devi’al [IR==r"/R,
tion and reflect the intrinsic fluctuations induced by the ran- A
domization of the lattice. For the chosen threshold values v2=p?+

(low excitabilitieg, the agreement between the theoretical

curves and the CA simulation§ is excellent. The largest wherep=p/R and we have adopted the same sign conven-
simulation value shown for eadk was the maximum value tjon for v as for . The limits of the¢ integration for eaclp

for which the wave fronts were stable. There are two reasongre from — » to + w, wherew is found by settingy=1/7

for the deviations from the theoretical curves at lajg@ear and ¢=w in Eq. (22). This yields

the kneg. The first is due to the approximation of continuous

c— i)2—2A<E\:— l)cos (22)
7 p 7 b,

phase used in Eq19) and the second is the specific method ~y 2¢c ~n

of assigning the actual element phases in the CA simulations, p = 7 e

which we discuss in Appendix B. ®=arcco§ ———— - (23
2p|c—=
=

VI. CA WAVE FRONTS WITH CURVATURE

In order to analyze the propagation of a curved CA soli- 10 assign a phase value for each p,¢) we will also
tary wave front, we evaluate the integral in E@2) by ap-  require the expression for the distankg to the integration
proximating the front locally by a circle of radiusas shown ~ Point from the wave-front edgdBCDE directed along the
in Fig. 10. For convenience, we define the dimensionlesgnward normal, which in dimensionless form is given by
rescaled curvaturg=Rx«= * R/r, with plus and minus cor- A,=v—1/5 (see Fig. 1D In the first approximation the
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equation determining the pha$eof a point at a distancén (a)
from the front can be written as

Propagation speed
A

1
-

~ n . D AN
T=—7—. (29 4 Surface: F(C,Kn) = 0
C

Generally, such a relation should incorporate the dependence
on the specific history of evolution of the wave-front shape.
Equation(24) is valid in the approximation where the front
curvaturex is small and the speed and curvature do not
change appreciably in the neighborhood of p@n(“steady
propagation’). This approximation is identical to that used
to obtain the eikonal relatiof) in RDE systems. Since the
variable v in expression(24) is a specific simple function

v(p,d;c,n) determined by Eq(22), we have, according to
Eq. (29), T=T(p,¢;c,n) and the excitation conditiofl3)
applied to curved wave fronts becomes (0)

Threshold

<>
[}
o
[}

N oA N PN ~ ~
K=QE4JA dpf PO S (e m)ip dé,
c 0
(25

where the anglew(p;c,7) is given by expression(23).
Given the functionT(p,#;C,7), Eq. (25 explicitly ex-
presseK as a function of, # and?y. It also represents as

an implicit function ofK, 7%, and . It is easy to check that

in the limit »— 0, Eq.(25) reduces to Eq(19) and therefore
yields the correct transition to the plane-wave limit. The so-
lutions of Eq.(25) must generally be found numerically. In
the following subsections, we consider the basic structure of
these solutions and compare it to that found for typical RDE
systems. Curvature

Threshold

v=0.5

A. The critical curvature FIG. 11. Surfacd=(c,K, ) =0 (a) obtained from numerical so-

In Sec. V, we identified the knee points of the family of ution of Eq. (25) for a fixed recovery rate constany£0.5) and
curvescy(K) for varying y as the points of marginal stability (b) a set of its fixedy contours. At each fixedy, the lower branch
of planar wave fronts. We now seek the dependence of theg¥ the contour(below the kneprepresents unstable wave-front so-
knee coordinates on the wave-front curvatgreFor a fixed  lutions. The curve labeled( ) in (b) is the locus of points obtained

value of 3, the solutions to Eq(25) comprise a surface by intersecting the surfade with the cutting plan& = const=K ;.

F(f:,f(,n)=0 as shown in Figs. 1&) and 11b). Since we This curve represents theAdeperldence of the front sﬁaﬂd the
are treating the curvature as a perturbation to the plane-waveont curvature for fixed K and y. Its lower branch is unstable.
case, we expect that for each fixedcontour[Fig. 11(b)], The 5 coordinate of the knee point af 7) is the critical curvature
the lower solution branch represents unstable curved waves.;: (see text Note also that the associated critical speddis
front configurations. When the curvature effects are takemonzero.

into account, the knee coordinates trace out a parametric . . )
curve in the K,8) plane with 7 as the parameter. If we (A"’C) plane whose coordinate depends parametrically on the

intersect the surfacé with a cutting planeK =K, = const v value used to specify the surfae The » coordinate of

with K, less than the plane-waven€0) knee threshold this point we call the critical cyrvaturecl and thec coor-
value 3ve find that for each constantcontour we have two dinate we call the critical speexj. The critical curvature is
intersection points, a fast speed on the stable branch and(@PProximately the maximum curvature at which a continu-
slow speed on the unstable branch. The locus of these poinf4!S Convex wave front can stably propagate and is associated

is th labeled hich is the d d ¢ with a nonzero critical speed. This definition of the critical
is the curve labeled(#), which is the dependence of wave point is strictly valid in the stationary propagation approxi-

front speed on front curvature fér=K, and the specified.  mation. When this approximation is not valid, the surféice
When 7 reaches the critical valug= 7.y, the two intersec- s not unique and will depend on the specific history of evo-
tion points merge with the knee point ofK) as shown in |ytion used to determine the phase functibp, #;c,7) in
Fig. 11(b). This defines for eactk a critical point in the Eqg.(25).
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FIG. 12. Critical curvaturey,, versus recovery rate constapt FIG. 13. Propagation speed versus curvaturen for fixed

for two selected values df. The curves are very similar to that tAhresholdRZO.Qn- and selected v:";llues of the recovery rate constant
obtained for a RDE model by Mikhailov and Zykdsee Fig. 8 of 7. The curve for trigger wavesy=0) is shown in bold and is
Ref. [29]). For each threshol&, the critical curvature must go to approximately linear due to the choice of a high excitation thresh-
zero when} reaches its knee value for plane wa\5e§ax(k) (see old. The slow speedunstable solution§ are shown b}/ the dashed
curves in Fig. 5. portions of the curves. The dependengey) for eachy becomes
strongly nonlinear near the critical curvatupg,, where the deriva-

In their analysis of the relatiog(x) in RDE systems, tive df:/dr; beFomes infinite. The pIAane-Wélve spéx@d(the inter-
Mikhailov and Zykov[29] defined the critical curvature and Cept with thec axis) decreases witty. Note that the slope af
speed for continuous wave fronts via the conditibe/dx =0 also depends on the recovery rate constarfor the trigger
= for a fixed thresholdu, , fixed &, and k small. It is  wave case, we may identify this slope with the effective diffusion
evident from Fig. 1(b) that in our CA model the condition constant of the CA medium.
dc/dyp=c is satisfied at our critical pointcq,K;,7c1), A
where the stable and unstable branches(of) meet. Thus With y are clearly seen: As the recovery rate increases, the
our definition is equivalent to Mikhailov and Zykov’s. Since curve and its critical point are drawn toward theaxis and
the critical point in the CA model is also associated with thethe plane-wave speetthe intercept with thec axis) de-
knee_.ofc(K),_we see that it is indeed a point of mar_g.inal creases. Aty=y,.(K), the curve will collapse to a single
stability. In Fig. 12 we plot the magnitude of the critical ,int on thec axis (corresponding to zero critical curvatiire
curvature versuy for two selected values df. At the left  since this is the point of marginal stabilitkned for plane
edgey=0 we get the trigger wave critical curvature, which waves. It is also evident from the figure that the derivative
is associated with a zero speed wave front. The critical curb’ =dc/d at =0 is an increasing function of that will

vature 7, decreases to zero at a certain POt Yma(K).  diverge asy approache®y.(K). The y dependence of our
This is physically sensible sineg, ,{K) is the knee value at CA eikonal relation thus has the same characteristic features
which plane waves become marginally stable. The RDE neuas thes dependence of this relation in RDE systefmse Eq.
tral stability curvexc () shown in Fig. 8 of Ref[29] is  (9)]. We computed the CA dependence of the sldpe
very similar to our CA modebycy(y). =(dc/dn)|,-o on y numerically via Eq.(25) for selected
fixed values ofK. The results are shown in Fig. 14. The
slopeD’ increases monotonically witly and indeed begins
We now consider the variation @f{z) with y and ana- to diverge asy approaches its maximum val@ghown by the
lyze its behavior at sAmaAII cu[vature,s where the linear or  dashed lines in the figureWheny=0, the slope is the trig-
eikonal approximatiom=cy+ D’ 7 is applicable. The stable ger wave value and can be identified as the effective diffu-
branch of the curvec(s) for fixed K and % shown in  Sion constant of the CA medium.
Fig. 11(b) is monotonically decreasing with(0)=¢, and 10 €xamine the domain of validity of the steady propaga-
- A _ _ ~ tion approximation and the numerically evaluated eikonal
c(7c1)=cy. In Fig. 13 we show a family of curves(#) for

. - ~ parameterd’ and 60 for the CA medium, we performed
a fixed thresholK and selected values of. We shall call g jations of evolving circular waves for various initial

such a curve a nonlinear curvature relation. The bold curve,nfig rations. Excited circular regions of different sizes
represents the trigger wave case=(0). The curves are (with Sinitialized to 1.0) were created and the instantaneous
fairly linear at small and strongly nonlinear near the criti- ave-front speeds and front curvatures were calculated by
cal curvature, where the derivatide/d 7 increases dramati- measuring the average radial distaficg to elements on the
cally and becomes infinite at the critical point. The variationsfront (defined as excited elements with at least one adjacent
of the critical curvature, critical speed, and plane-wave speetksting neighbor at time stepn. The instantaneous speed

B. The Eikonal relation
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R . FIG. 15. Wave-front speed versus front curvature in the CA
FIG. 14. SlopeD=dc/d7],—o versus recovery rate constapt  model adjusted to a particular RDE system. The CA parameter
(solid lineg for selected fixed threshold§. The slope is a mono- values are listed in Fig. 16. The stalisolid line) and unstable
tonically increasing function of that diverges ag= yn.(K) (in-  (dashed lingbranches of(«) were obtained from numerical solu-
dicated by the vertical dashed line¥he maximumy values cor-  fion of Eq. (25, which assumes stationasgteady propagation.

respond to the case of marginal stability of plane waves at thd & open circleO represent the instantaneoasand « obtained
corresponding thresholds. from direct numerical solution of the evolution equatid@8) and

(14) for two specific stimulated$=1.0, At=1) circular domains.
measured in lattice units per time step was given(iy. ;) The diamonds are the results of three different CA simulations
—(ry) and the dimensionless curvatusewas —Ry/(r,),  (with different lattice randomizatiopsat each of the two initial
where Ry is the neighborhood radius measured in |atticec_ond|t|ons. The dewatlon_from_the stead_y propagation approxima-
units. The values of the CA paramet®s K, At, andy tion at Igr_g_e curvgt_ures is evident, as is the_dependence on the
were chosen by adjusting the CA model to the specific RDEspecmc initial condition. As the curvature magnitude decreases, the
system used in Sec. VII. The stabisolid) and unstable SPe€ds and curvatures approach the stable branctugfasymp-
(dashegl branches of the CA model( «) obtained via solu- totically.

tion of Eq.(25) for these parameter values are shown in Fig.minimum circle radiugwith a maximum curvatujewas re-
15. The circles in the figure represent the theoretical eVOquuired to generate an outgoing waffer smaller radii the
tion of two different sized circular excited regions computed,; qve died out The “threshold” radius case is represented

directly via numerical solution of equatiorid3) and (14)  y the jower set of points in the figure. When we applied the
with T,=o0. The solid diamonds show the results of threeim|ys for a longer duratiofnot shown with S maintained
different simulations(each with a different lattice random- 4¢ 1 g for multiple time steps, smaller excited circlesth
ization) at each initial configuration in the CA model. The |5ger curvatures than the threshold valsaccessfully pro-
fluctuations induced by the lattice randomization are evidenty,;ceq propagating waves. Physically, this is due to the retar-

but the agreement with theoretical predictions is very goodyaion of local recovery effects in the stimulated region via
We see that for small to moderate curvatures, a linear e'kona'currents” supplied by the stimulating device itself. We

relationc=cy+ D'k adequately represents the behavior Ofplan a thorough analysis of this phenomenon in a future
the CA wave fronts in all three approaches represented in th&udy.
figure.

Two important features of excitable media can be illus-
trated using Fig. 15. First, notice that at large curvatures near
the critical valuex,, the actual speed-curvature dependence As a final illustration of the correspondence between our
is sensitive to the initial conditions, but as the magnitude ofCA model and RDE models of the forifl) and (2), we
the front curvature decreases, the points converge to the nobensider a steadily rotating spiral wave in the CA model
linear curvature relationc(x) obtained assuming steady adjusted to a particular RDE system. In contrast to the simu-
propagation. This dependence on the history of evolutionations depicted in Fig. 15, where the front speeds and front
means that a unique critical curvature may not exist in excitcurvatures vary with time, a steadily rotating spiral is a
able media. The critical value;, defined above is approxi- steady-state configuratiaiin a rotating reference framen
mately realized only for the special history-independent casevhich the front curvature and speéd the normal direction
of a spiral wave front steadily rotating around a minimally vary according to a specific function of arclength along the
sized, impenetrable hole. This was successfully demonspiral arm.(The stationarity of the spiral in the rotating
strated for a RDE system in RéR9]. The second important frame may just be a first approximation. In reality, the influ-
feature is that the inhibitory process affects the specific sizeence of the exponentially decaying tail of the wave may in-
strength-duration relation for applied stimuli that can suc-troduce a small but ever-present, nonvanishing perturbation.
cessfully generate propagating way88—35. For the two  Since we are currently considering wave fronts that do not
cases shown in Fig. 15, the duration of the stimulus was oninteract with wave tails, we are restricted to a specific class
time step and for an initiab value of 1.0 we found that a of spiral waves for our analysis. The dynamics of spiral

VIl. CA SPIRAL WAVE FRONTS
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waves is controlled by the medium’s excitability, the rate of (a)
recovery of excitability following the wave-back transition,

and the boundary conditions. If the extent of the medium is 3256,
sufficiently large and the excitability is sufficiently weak,
spiral waves rotate around a quiescémexcited circular
core at a unigue characteristic frequency of the medium. In
the “thin arm” regime[15], the interaction of the wave front
with its previous wave tail is negligible and the front speed

is determined almost entirely by the nonlinear curvature re-
lation c(«) (provided the front curvature radius near the spi-
ral tip is much larger than the wave-front thickng¢8sl5]).

In this domain, the motion of most of the spiraiway from FIG. 16. (a) Spiral waves in the RDE modél) and (2) with
the tip) is well described via a kinematic mode7,36, i yinetic functions(3) and(4) andi(u) given by Eq.(26) and (b) the

which the wave is treated as a curve in the plane that obeySa model adjusted to the RDEs. The RDE model parameter values
certain equations of motion that dependafix). The kine-  weres,=1.0, s,=1.0, u,=0.25, ¢=7.0, ande=0.02. The

matic analysis of spirals in RDE systems has proved succesgA parameter values obtained using our adjustment criteria were
ful in describing the results of numerical solutidi29]. Here  Rr=165 At=0.42, K=2.025, andy=0.044. The black re-
we check the predictions of kinematic theory in our CA gions are excited elements=u, in the RDE$, gray regions are
model by directly comparing the CA and RDE spiral solu- recovering, and white regions are resting. The rotation periods are
tions for the CA model adjusted to a specific RDE system. approximately the samea) Tepirar=71.3 and(b) Tepira=73.3.

We use a RDE system with kinetic functiof® and (4) The correspondence between the spiral shapes is excellent, except

(b)

Tg=713

and the current(u) given by near the spiral core. Since the “eikonal” relation§x) in both
systems are approximately the same, kinematic theory demands that
S;u  when usu, the shapes along the arms agree since the shape is uniquely deter-
i(u)= (26) mined byc(k) for a given rotation frequency in a sufficiently large
Sz(u_ 1) when u>u, . medlum[29]

Based on trial solutions and recent studies of this sy$tdm
we found that the parameter valugs=1.0, s,=1.0, ¢
=7, &=0.02, andu, =0.25 yielded a spiral wave satisfy-
ing the thin arm requirement. The trigger wave sp€gdnd
the trigger wave critical curvature., were calculated for

CA spiral wave are shown in Fig. 16. In both pictures, the
grid spacingAx is approximately 0.2 and the grid size is
250X 250. White regions represent resting elements (
<0.02 in the RDE}s black represents excited elements (
: ) . >u, in the RDES$, and gray regions represent unexcited
these parameter values using the expressions in Re1S].  (yecovering elements. The rotation periods are 73.3 and 71.3
We obtainedCy=1.15 andx,,=0.94 (in the chosen units j, the CA and PDE models, respectively. Note that the spiral

D=1.0). The plane solitary wave speegle) was measured  ghanes are practically identical along the spiral arm except in
via numerical solutions using explicit Euler integration for o vicinity of the core. In this region, the specific value of

the recovery equatio®) and a forward time-centered finite- 1_ anq also the details of the wave back transition are im-
difference schemg87] for the diffusive equatioril). Forthe  orant in determining the CA spiral tip shape and the rota-

discretizationsh=0.2 (grid spacing and 5t=0.002 (time {5y period. The almost exact correspondence of the CA and
step, the measured plane-wave speed w@s 1.0. The du-  ppE periods was thus fortuitous. According to the kinematic
r_atlon of the p_Iatea}u phase for the plane wave was aies theory of spirals, for a spiral with a given rotation period, the
fined as the time interval betvveep the crossingsl au,) shape away from the tip is unique and depends onlg(a)
andT, andTe were set equal to this value in the CA model. [2g]. The remarkable similarity of the CA and RDE spirals
The medium was considered fully recovered wheme- g ggests that this dependence must be roughly the same in
turned to 0.02, which occurred &t=26.65. both systems. We computed the sldpé of the eikonal re-

The procedure for computing the CA parameter values fo{ation for the RDE system using expressigsand (9) and

the medium in the trigger wave limit is described in Réfl 5 nd D’'~1.14, which is in good agreement with the

and uniquely determines the values of the circle raiithe Sz-dependent CA model value of 1.19. Good correspondence

scaled threshold, the time step\t for given RDE solution 55 also obtained when the grid spacing in both models was

values ofCq and «¢,, and the RDE diffusion constal.  yequced by 50%the stability of the solution method also

The remaining CA model parameter valgeis found by  required the reduction of the RDE model time $tephe

equating the plane-solitary-wave speegl to the quantity consistency of the CA spiral shape with that predicted by the

coR/At, with C, obtained from Eq.20). To simulate an kinematic theory of spiral waves for ouf ) was studied in

infinite medium, we also had to use no-flux boundary condi-detail in Ref.[39] and excellent agreement was found.

tions along the edges of the grid. These conditions were only

implemented approximatefy88], but the measured CA spi-

ral period and shapésee below did not change noticeably ACKNOWLEDGMENTS
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Neighborhood A of stepm+1, which has a source intensity-lym. [Recall

I that in our model the source intensi§/is 1— yT(x), thus

L 15 the source intensity of thith step isSj=1—y(j—1).] The
rear boundary of the transition zone must shift backward due
to the perturbation by soméx®(sx*)<0), which can be
found from the condition of conservation of sourcing (1

Source —ym) 6xM=5c). Sincel is fixed, this gives rise to a per-

strength turbation in the position of the front at the next time step, so

that two sourcing steps now possess perturbed widths. At the

next time step, the third step width is perturbed and so on

until the width of themth step is perturbedOne can show

by direct calculations that the signs of all the respective per-

Shiftef Neighborhopd (1)

i 1
-5¢ x turbations are the same as that &fV): all steps become
5x() New fror?“ ssition shorter, which is true for any source that decreases with
2 eration ) time) The backward shift of the rear boundary of the neigh-

borhood 8x(™ arising afterm time steps is related to the
FIG. 17. Perturbation of the 1D CA wave front. The neighbor- radjus of the neighborhood, the widtbs ¢ of the firstm
hood radiud. is indicated by the solid horizontal bars. The source steps (=1,2, . .. m), and the final perturbation of the speed

strength of each element in the transition regiolepends on its sc by the condition that their widths sum up to the neigh-
phaseT and the recovery rate constapt S(T)=1-—yT. For a borhood radius

steadily propagating wave, the spacing between zones of &ual

values is given by the propagation speed he initial perturbation m
of the front edge by the amount™ requires a shift in the neigh- — XM 4+me+ D scV+c+dc=L. (A2)
borhood by a distancéx® in order for the integralQ of the i=1

sources inside the transition zone to remain equal to the excitation .
thresholdK. This shift results in a perturbation of the front speed USINg Ed.(A1) we reduce Eq(A2) to
5ct?) at the next time step and so on. After steps, the spacing m
between the t_aquzﬂ value zones is no longer uniform,_ but the sum Sc=ox(m — E sclh (A3)
of these spacings can be used to estimate the magnitude of the final =1
speed perturbatioAc.
Now the conservation of sourcing can be written as
North American Society of Pacing and Electrophysiology. m
- (m)— —(i— (M)
APPENDIX A: INSTABILITY OF THE LOWER BRANCH (1= ym) o izl [1=y(i=D)Joct. (A4)
OF c=c(K)
Eliminating 5x(™ from Egs.(A3) and (A4) we have
We consider a 1D solitary wave that propagates steadily
along thex axis and define its propagation speetb be the y(m+1—i)
dimensionless distance that the wave front shifts in one time 50:2 1—ym
stepAt. For 1D solitary pulses and 2D plane waves, the CA =t
time step can be chosen fredly] and for convenience we

choose it in such a way that the radiusf the neighborhood  Using the fact that alsc® have the same sign, we can now

m

m
: Y . .
(= > (m+1-j)
éc 1—ym= joc .
(A5)

[—L,L] is an integer multiple ot: estimate the perturbatiofc as
c(m+1)=L, (A1) m | 5¢D)| i m
Y . i Y|oC |m|n .
Scl= 5c(m+l i) >
|ocl 1—ymj211| | 1—ym lej

wherem is an integer and. =1 in our chosen units. For a

steadily propagating wave, the local source interS{fiy(x))

is a stepwise functiofa staircase with equal step widjhes

shown in Fig. 17. We now slightly perturb the position of the

front so that the width of the first step becomed)=c ym? . .

+6c®). We consider a negative perturbatiofc(X)<0, |6C|>2(l_—|5C(J)|minEq|5C(J)|min- (A7)
. . ym)

which we believe must be the most dangerous, as such a

perturbation leaves a solution on the lower branchcof |f the factorq is greater than unity

=c(K) on the lower branch. At the instant we perturb the

front position, the source contribution from steps,2,3. ,m . ym

on the staircase does not change, while the source contribu- a= 2(1_—7m)>1’

tion of the front step decreases hyc¥)|. Now, in order to

satisfy the excitation conditio® =K (conservation of sourc- then after eacim steps the minimum perturbation acquires

ing) this decrease must somehow be compensated. This céine factorq and therefore grows as a geometric progression

come only from the rear of the sourcing zoeear the with the common rati@™>1. Now in the 1D case under

neighborhood boundaryvhich is forced to overlap a portion consideration, one can readily prove that the condi{i®)

(A6)
This finally yields

2
(A8)



57 WAVE-FRONT PROPAGATION IN A DISCRETE MODEL ... 7039

is equivalent to the requirement that the spedaklongs to

the lower branch of the curv&=K(c). Indeed, one can
determine the marginal value of the speed that separates the
upper and lower branches by taking a derivative of @)

and setting it to zero, which according to E&1) yields

1 2
= 1+ —, (A9)
Co,min Y

and using Eq(A1) we finally obtain

- ]
2 ]

(O]

o 3

G 1 ™ g o T

g 4_“\ ........... K=3mwg
g ]

o 34 i

c ]

(_5 4

o 1

2
Mmax=—1+ \/1+ —. (A10) ] !

Y -
0 01 02 03 04 05 06 07 08 09 1
Now one can readily check that the condition<my,, is
equivalent to the conditiofA8), which completes our proof.
The above analysis reveals the remarkable fact that the eX- FiG. 18. Same as Fig. 9, but for low excitation threshdfds
ponﬁr:'tlal gzowt? tOf :Ee ;t)eliturb?tlons f;joes nr?i_occtﬂ WIth(high excitabilitie3. The bold curves are the stable branches of
€ach ime step butrathertakes place after each ime Me Waves =) ».ording to Eq(20) and the dotted curves correspond to
shifts the distancé&. This confirms our previous identifica- 5 g a(20 v .

. . . L - _the solutions of Eq(19) for the special choice o6 as a constant,
tion of the neighborhood radius as the intrinsic physical - -

. o S=1-v/2. At the lowest threshold value shown, all contributing
width of the excitation wave front7].

excited elements in the neighborhood of a given element have a
dimensionless phase coordinafe=0 and thus the model cannot
“feel” the source falloff due to recovery. In such cases, the plane-
wave speeds are given by the dotted curves.

Recovery rate constant

APPENDIX B: CORRECTION FOR DISCRETE TIME
IN THE CA MODEL

While the lattice randomization in the CA model provides o R
the correction for the discreteness of spéae, it guarantees S=1—y(T+3). For the high thresholdsK( near=) shown
rotational and translation invariance on the avejatiee ba- in Fig. 9, this adequately adjusts the model behavior to cor-
sic CA model provides no similar averaging in the time do-respond to the theoretical values obtained by treating time as
main. This limitation cannot be overcome by simply further continuous(though the knee points do not exactly coingide

reducing the time step value, since in our simple four-On the other hand, for low thresh0|d&(<ﬂ-/2), the CA
parameter model for nonplanar wave fronts, this quantity igealization of the continuous time behavior is not as good
fixed by the requirements of the correct trigger wave limitquantitatively(but the dependence of the speedpis still

[7]. In discrete time, a newly excited CA element is assigneghysically sensible In Fig. 18 the bold curves are the solu-

a dimensionless phade=T/At=0. In this case, the contri- tions of Eqg.(19), while the dotted curves correspond to the
bution of these elements to the integral in E1P) is simply  special case where the integrand is not dependent on the

Ax?, whereAX is the element size in units &&. This mag-  phase, but given by the consts®i 1— /2. The exact cor-

nitude clearly exceeds the contribution{iAx/c,)Ax? ob-  respondence of the simulation points with the dotted curve
tained when time is approximated as being continuous. Moréor the smallest threshold is because in this case the phase
importantly, when the front shift in one time steps exceedof every element inside the circle is zero. Thus, even at high
half of the interaction radiu® (low thresholdg the model excitabilities the CA model gives physically reasonable be-
does not “feel” the recovery effects at all since all elementshavior and is predictive. For most cases of inte{&3t the

in the interaction circle will have phas&s=0. To correct for  threshold valueX required to adjust to specific RDE sys-

this discretization artifact in the simulations, each element'sems exceedr/2 and the solutions of Eq19) adequately
source intensity is computed via the expressiondescribe the behavior of the CA model.
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