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Wave-front propagation in a discrete model of excitable media

A. B. Feldman,* Y. B. Chernyak, and R. J. Cohen
Division of Health Sciences and Technology, Harvard University—Massachusetts Institute of Technology, Cambridge, Massac

02139
~Received 4 December 1997!

We generalize our recent discrete cellular automata~CA! model of excitable media@Y. B. Chernyak, A. B.
Feldman, and R. J. Cohen, Phys. Rev. E55, 3215~1997!# to incorporate the effects of inhibitory processes on
the propagation of the excitation wave front. In the common two variable reaction-diffusion~RD! models of
excitable media, the inhibitory process is described by thev ‘‘controller’’ variable responsible for the resto-
ration of the equilibrium state following excitation. In myocardial tissue, the inhibitory effects are mainly due
to the inactivation of the fast sodium current. We represent inhibition using a physical model in which the
‘‘source’’ contribution of excited elements to the excitation of their neighbors decreases with time as a simple
function with a single adjustable parameter~a rate constant!. We sought specific solutions of the CA state
transition equations and obtained~both analytically and numerically! the dependence of the wave-front speed
c on the four model parameters and the wave-front curvaturek. By requiring that the major characteristics of
c(k) in our CA model coincide with those obtained from solutions of a specific RD model, we find a unique
set of CA parameter values for a given excitable medium. The basic structure of our CA solutions is remark-
ably similar to that found in typical RD systems~similar behavior is observed when the analogous model
parameters are varied!. Most notably, the ‘‘turn-on’’ of the inhibitory process is accompanied by the appear-
ance of a solution branch of slow speed, unstable waves. Additionally, whenk is small, we obtain a family of
‘‘eikonal’’ relations c(k) that are suitable for the kinematic analysis of traveling waves in the CA medium. We
compared the solutions of the CA equations to CA simulations for the case of plane waves and circular~target!
waves and found excellent agreement. We then studied a spiral wave using the CA model adjusted to a specific
RD system and found good correspondence between the shapes of the RD and CA spiral arms in the region
away from the tip where kinematic theory applies. Our analysis suggests that only four physical parameters
control the behavior of wave fronts in excitable media.
@S1063-651X~98!12706-X#

PACS number~s!: 87.22.2q, 82.20.Wt, 82.40.Ck, 02.70.2c
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I. INTRODUCTION

Traveling-wave patterns in excitable media have be
studied extensively using continuous reaction-diffus
equation~RDE! models and discrete cellular automata~CA!
models. The development of CA modeling approaches
been primarily motivated by their relative computational
ficiency and ease of implementation on computers~though
for some excitable media the discrete description may a
be a more appropriate representation of the system@1#!. CA
simulations are an attractive alternative to solutions
coupled nonlinear RDEs, since these equations are often
lytically intractable and usually too computationally burde
some to allow systematic numerical exploration of a s
tem’s parameter space~this is particularly true for models o
myocardial tissue@2#!. This aspect of CA modeling ha
caused the intuitive appeal of such models to receive m
less attention. CA models in which the parameters have c
physical interpretations can also be useful vehicles for un
standing complex behavior, such as the ‘‘meandering’’
spiral waves and their interaction with spatial heterogenei

*Author to whom correspondence should be addressed. Pre
address: Massachusetts Institute of Technology, 77 Massachu
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in the medium~both processes are believed to be import
in cardiac fibrillation!. An adequate description of the bas
physical mechanisms controlling these processes has pr
elusive via analysis of RDE solutions, though recently i
portant progress has been made@3–6#. To be suitable for
studying complex wave phenomena, the solutions of the
crete CA equations should be in good correspondence
those of the RDEs for a given physical system. In a rec
article @7# we demonstrated that it was possible to quant
tively link the traveling-wave solutions of a general class
RDE models to those of a simple but appropriately co
structed CA model in a physically self-consistent way. Th
analysis was valid for trigger waves, which arise in the lim
when the recovery and other inhibitory processes
switched off. In this paper we establish the more gene
correspondence for the case of solitary wave fronts, wh
incorporate the effects of inhibitory processes on excitati
The demonstration of this correspondence represents an
portant step toward the development of quantitatively re
able CA models of continuous media.

Recent studies of complex wave patterns such as rota
spiral waves in CA models have demonstrated many qu
tative and sometimes quantitative similarities between
CA solutions and the numerical solutions of specific RD
@8–10#. This correspondence strongly suggests that in m
cases these two representations of excitable media ma
‘‘dynamically equivalent,’’which means that the system
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support the same wave patterns~e.g., plane waves, targe
waves, and spiral waves!, exhibit similar behavior, and hav
similar responses when the analogous model parameter
varied. This implies the existence of a smooth mapping~not
necessarily stationary! between the two systems. We prev
ously found strong evidence of such equivalence for trig
waves using a simple three-parameter CA model of a t
dimensional, isotropic medium@7#. This analysis demon
strated the correspondence of the CA dependence of
wave speedc on the wave-front curvaturek with that of a
general class of RDE models. Here we generalize the o
nal CA model to represent solitary wave fronts and th
examine in detail the changes inc(k) as the major CA pa-
rameters are varied. These changes are then compar
those found in simple RDE models under similar variatio
of the analogous parameters. We found remarkable simi
ties between the structure of the CA solutions and that ty
cally found in the RDEs, including the appearance of a
lution branch of slow-speed, unstable waves. This equiva
solution structure allows us to establish a quantitative m
ping between the two representations of the system.

Our results are applicable to any physical process
reduces the magnitude of the excitatory current in the wa
front transition zone during the front’s characteristic tran
tion time. In myocardial tissue, the major inhibitory proce
is the inactivation~‘‘turning off’’ ! of the fast Na1 current
@11#. ~The two-variable reaction-diffusion models consider
in this article are only approximately applicable to myoc
dial tissue since the fast Na1 current’s contribution to the
source term in the diffusion equation for the cell transme
brane potential is also activated~‘‘turned on’’! with nonzero
time constant. The extent to which this contribution can
approximated as steady state, as well as the effect of
approximation on the values of important traveling wave
rameters, requires further clarification@11#. See Ref.@12# for
additional discussion of the limitations of two-variable RD
models of myocardium.! For clarity, however, our results ar
presented for a generic recovery process. The required m
fication of our original CA model involves the introductio
of a monotonically decreasing function to describe the fall
of excitatory source current with time in the wave-front tra
sition zone. The basic features ofc(k) in the modified model
do not appear to depend on the specific choice of this fu
tion, so for simplicity we performed the analysis using
simple linear falloff with a single adjustable parameter:
recovery rate constantg. To adjust the CA model to a spe
cific RDE system, we calculateg and the three other CA
parameter values by requiring that four major characteris
of c(k) coincide in both representations of the medium~for
systems in which the RDEs are only approximately know
measured values may be preferred!. These characteristics ar
the trigger plane-wave speed, the trigger wave critical cur
ture ~the curvature at whichc50), the slopedc(0)/dk for
trigger waves, and the speed of a plane solitary wave, wh
incorporates the correction to the trigger wave value due
the inhibitory process. This yields a set of four equatio
with a unique solution for the four CA parameter values. O
results strongly suggest that this procedure is sufficient
the correct physical representation of the excitation w
front. The matching of additional characteristics of the RD
solutions will be required to represent the deexcitation w
are
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back and the partially refractory wave tail. These will be t
subject of future work.

This paper is divided into seven sections. In Sec. II
discuss traveling solitary waves in RDE models@see Eqs.~1!
and ~2! below# and introduce the specific relationship
needed for analysis of our CA model solutions. In Sec. III
generalize our CA model for trigger waves@7# by modifying
the CA state transition equations to incorporate the temp
falloff of the source currents in the wave front region. T
following two sections discuss the one-dimensional~1D!
solitary front and 2D plane-wave-front solutions in the mo
fied model~a proof of the instability of the slow speed solu
tion branch for 1D CA solitary fronts is given in Appendi
A!. In Sec. VI we derive the specific equation determini
the dependence ofc on k and analyze its solutions at larg
and small curvatures. We compute the ‘‘critical curvatur
in the kinematic approximation, which is the maximal cu
vature for a stably propagating, continuous wave front, a
also analyze the ‘‘eikonal’’ relation, which is the linear a
proximation toc(k) in the region of smallk. Finally, in Sec.
VII we adjust the CA model parameters to represent a s
cific RDE system and compare the CA spiral wave solut
to that obtained from the numerical solution of the RDEs

II. WAVE FRONTS IN CONTINUOUS RDE MODELS

A minimum model of an excitable medium with a sing
diffusing quantity can be described by two variablesu andv
that obey a set of reaction-diffusion equations given in
mensionless form by

]u

]t
5¹2u1 f ~u,v !, ~1!

]v
]t

5«g~u,v !, ~2!

where ¹2 is the Laplacian operator in spatial coordinat
(x,y,z), t is time, u represents the ‘‘concentration’’ of th
diffusively propagating entity, andv is a recovery variable
that controls the local recovery of excitability. The quant
« is defined as«[tu /tv , wheretu and tv are the charac-
teristic time scales associated with the evolution ofu andv,
respectively. Usually«!1, which corresponds to fast exc
tation and slow recovery. The functionsf (u,v) andg(u,v)
in Eqs.~1! and~2! describe the nonlinear local kinetics of th
system. For future reference, we shall call the funct
f (u,v) the ~reaction! source function and2 f (u,v) the ~re-
action! source current. To restore dimensions, the trans
mationst→t/tu and x→x/ADtu should be applied, where
D is the diffusion coefficient ofu.

The basic features of traveling waves in RDE systems
be seen via the analysis of a typical 1D solitary pulse so
tion. We shall consider the familiar, simple model with k
netic functionsf andg given by @13,14#

f ~u,v !52$ i ~u!1v%, ~3!

g~u,v !5zu2v, ~4!

where the functioni (u) is the piecewise linear current
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i ~u!5H s1u when u<u1

ū2s2u when u1,u,u2 , ū[s2u*
s3~u21! when u>u2.

~5!

A plot of i (u) is shown in Fig. 1~a!. The constantss1 , s2,
ands3 are all positive quantities. The currenti (u) has three
consecutive rootsu2 , u* , andu1 , with the middle rootu*
playing the role of an excitation threshold. Theu coordinates
of the beginning point and end point of the negative slo
region areu15ū/(s11s2) and u25(ū1s3)/(s21s3), re-
spectively. A 1D solitary pulse solution of this system
shown in Fig. 1~b!, which depicts the variation ofu and v
with the phasej5x2c0t for a pulse with constant speedc0.
The resting state (u2 , v2) of the system is~0, 0!. In the
trigger wave limit («50), the wave profile is described b
the rise ofu from its ‘‘resting state’’ valueu5u2 to its

FIG. 1. ~a! Piecewise linear current sourcei (u) given by expres-
sion ~5! and ~b! 1D solitary pulse solution of Eqs.~1! and ~2! for
f (u,v) andg(u,v) given by Eqs.~3! and ~4! with a specifici (u).
The parameter values used for the pulse weres1530.0, s2

50.9, s3530.0, ū50.12, z51.0, and «50.06 ~see Ref.
@13#!. In ~b!, the behavior ofu andv is shown as a function of the
phasej5x2c0t, wherec0 is the propagation speed. The directio
of propagation is indicated by the arrow. The wave front, wa
back, and wave tail are also indicated. All quantities shown
dimensionless.
e

‘‘excited state’’ valueu5u1 . For « small, the recovery
variablev varies slowly during the rapid upstroke ofu and is
displaced from its resting valuev2 by a small correction
«v1, wherev1 is a constant depending on the«50 solution
@15#. On the plateau of the pulse, the spatial and tempo
derivatives ofu are small andu approximately follows the
slow evolution ofv adiabatically, so at each phasej, u(j)
is given by the solution off „u(j),v(j)…50. When v ap-
proaches a specific maximum value, the deexcitation~or
wave-back! transition takes place. Following this transitio
the system slowly relaxes back to the equilibrium st
(u2 ,v2). This relaxing region is called the wave tail. W
shall focus our subsequent analysis on 1D and 2Dwave
fronts and consider propagation only in afully recovered
medium in its equilibrium state.

Figures 2~a! and 2~b! illustrate the deviations from the
trigger wave limit in the wave-front transition region ne
j50 for the 1D pulse. Figure 2~a! plots theu value versus
the phasej of the wave, with zero phase defined to be t
front crossing atu5u* . The length scaleL0 of the wave-
front transition region is a quantity of orderD/c0. The re-
covery effects due to nonzero« result in corrections in a
region extending approximately2L0,j,L0 that reduce the
pulse speed relative to that of the trigger wave~the reduction
is '5% for the pulse in Fig. 2!. The primary cause for this
reduction is seen in Fig. 2~b!, which plots the local values o
the source current2 f (u,v) for the pulse in Fig. 2~a!. The
important feature of this plot is that whenu sufficiently ex-
ceedsu* , the magnitude of the pulse source current~bold
curve! diminishes relatively to that of the trigger wave~dot-
ted curve! and the deviation grows asj grows in magnitude
until u approachesu151. This effective reduction in ampli-
tude of the excitatory source in Eq.~1! results in the reduced
speed, sincec0 scales roughly as the square root of t
source amplitude@16,17#. We note that in both the trigge
wave and pulse cases, the source current2 f (u,v) changes
sign at ~and near, respectively! the point whereu5u* and
becomes ‘‘excitatory,’’ meaning that its contribution in E
~1! has the same sign as]u/]t.0. We now consider a snap
shot of the front by settingt50 in j5x2c0t. At points on
the frontu5u(x) with u values larger that that of the front’
inflection point ui (u* ,ui,u2), the source current mus
overcompensate for the diffusion ofu since d2u/dx2,0.
The source currents in this region of the front may
thought of as the sources of the diffusive flux to regio
below the inflection point whered2u/dx2.0 ~sinks!. The
difference between the pulse and trigger wave source cur
values increases with the distancexi2x, wherexi is the x
coordinate of the inflection point. In terms of local time~set-
ting x50 in j5x2c0t), this deviation can also be viewed a
an increasing function of the~scaled! time elapsed since the
crossing atu5ui . Finally, we note that asu approachesu1 ,
the pulse source current again changes sign and ass
small positive ~deexcitatory! values, while for the trigger
wave it approaches zero asymptotically via negative~excita-
tory! values asj→2`. The above features of the sourc
currents in the front transition region form the physical ba
for our CA model of inhibitory effects discussed in Sec. I

The plane-solitary-wave speedc0 in the medium@Eqs.
~1!–~5!# depends on the specific value of the thresholdu* ,

e
e
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the slopess1 ,s2 ,s3, the coupling constantz, and the small
parameter«. For our present purposes, it suffices to
s1 , s2 , s3, andz and consider the variation of the prop
gation speed withu* and«. For a given value of«, smaller
values ofu* produce faster waves, while for fixed thresho
u* , faster waves are generated at smaller values of«. Typi-
cal c0(u* ) andc0(«) for excitable media are shown in Fig
4~b! and 5~b!, respectively. In both cases, the plane-wa
speed decreases monotonically from a maximum value
‘‘knee’’ value, below which the wave is no longer stable~the
knee is the point where]c0 /]u* or ]c0 /]« becomes infi-
nite!. Rinzel and Keller@18# obtained similar dependence
for a simple piecewise lineari (u) and proved that the slow
speed solutions below the knee were unstable. For a g
u* and small«, the functionc0(«) for 1D solitary pulses or
2D plane waves can be approximated far from the knee
@19#

FIG. 2. The wave-front profilesu(j) ~a! and~b! the local source
currents2 f (u,v) for the 1D solitary pulse in Fig. 1~b! and the
trigger wave («50) solution. The middle rootu* of i (u) and theu
valueu5ui of the front’s inflection point are indicated. The reco
ery process results in small corrections tou and f (u,v) over the
front transition zone. At sufficiently large negative phase values,
difference between the magnitudes of the pulse and trigger w
source currents increases with the magnitude ofj. This reduces the
pulse propagation speed by about 5% from the trigger wave va
e
a

en

as

c0~«!5C02x«, ~6!

whereC0 is the trigger wave («50) speed and the constan
x depends on the thresholdu* ~and all other temporarily
fixed parameters!. The method for computing the trigge
wave speedC0 is discussed in several recent pape
@16,17,19–22#. Approximate analytical expressions forx
were reported in Refs.@4,23# for specific RDE systems.

In two dimensions, the local wave speed additionally d
pends on the front curvaturek. In the limit «50, the normal
componentC of the trigger wave velocity is approximatel
given by @23,24#

C5C01Dk, ~7!

whereC0 is the trigger plane-wave speed for a fixedu* , D
is the diffusion coefficient ofu, and the curvaturek is de-
fined to be negative for convex wave fronts. This express
is valid for small to moderate curvatures@15# and is derived
under the condition that the wave front’s spatial profile
quasistationary~i.e., it does not change appreciably over t
front transition time scaleL0 /C0). The linear approximation
~7! is often referred to as the ‘‘eikonal’’ relation for the me
dium @25,26#. Generally,C(k) is nonlinear at large curva
tures and the critical curvaturekcr corresponding to vanish
ing trigger wave speed can be rigorously defined
requiring thatu and v be stationary,]u/]t50, and]v/]t
50 @7#. When « is nonzero, the dependence of the wav
front speedc on curvature is still linear for smallk, but the
interceptc0 and the slopeD8[dc/dkuk50 depend on«. Us-
ing an elegant analysis, Zykov@27# derived an expression fo
c(k) for small k and small«, with the slopeD8 given by
@12#

D85DS 11
«x

c0
D , ~8!

where x is the same constant as in Eq.~7! and D is the
diffusion coefficient ofu. A more general expression forD8
valid for all «,«knee ~corresponding to stable propagatio!
was recently found by Pertsov, Wellner, and Jalife@28#:

D85D$12~«/c0!~]c0 /]«!%, ~9!

wherec05c0(«) is the full dependence of the plane-wav
speed on«. Since the derivative]c0 /]« is negative and
turns into negative infinity at«5«knee, we see that the slope
D8 is a growing function of« that diverges at«5«knee.

At large curvatures, the functionc(k) is nonlinear just as
in the trigger wave case. However, the relation betweec
andk expressed ask5k(c) for convex fronts has an extre
mum at the point (kc1 ,c1). This point is presumed to repre
sent the point of marginal stability separating the stablec
.c1) and unstable (c,c1) curved wave-front solution
branches@29#. The quantitykc1 is called the critical curva-
ture for a continuous wave front~in contrast to a front with
an exposed wave edge!. It is important to note that propaga
tion of a front with critical curvaturekc1 takes place with a
nonvanishing critical speedc1. As « increases,ukc1u de-
creases~the marginal stability point moves towards the spe
axis! and must vanish when« reaches«knee since this is the
value at which plane waves (k50) become marginally
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stable@29#. We note that this definition of the critical curva
ture assumes steady-state conditions and thus does no
pend on the specific history of front evolution from whic
the configuration (kc1 ,c1) arose. These conditions exi
when a steadily rotating spiral wave front is attached to
smallest possible impermeable, circular hole~when the hole
radius is too small, the spiral front detaches due to its ina
ity support curvature values larger thatukc1u) @29#. Gener-
ally, c(k) determined from the evolution of a small excite
circular domain will depend on the initial conditions, such
the amplitude and duration of an externally applied stimul
and the specific definition of the wave-front position. Ho
ever, our analysis shows that as the wave front propag
further away from the source, the instantaneous speed
curvature values approach the history-independentc(k) as-
ymptotically ask goes to zero@11#.

III. CELLULAR AUTOMATA MODEL WITH INHIBITION

In this section we generalize our recent CA model
simulating trigger waves@7# in two-dimensional, isotropic
media to incorporate the effects of an inhibitory process
propagation. In the CA model, the medium is decompo
into squares with sideDx, whose positions on the lattice ar
randomized according to the Markus-Hess@30# scheme in
order to smooth out the discreteness of the lattice. Each
ment is assigned two internal parameters, an excita
thresholdK and an interaction circle radiusR, and also two
variables, a binary state variableU and an internal phaseT,
which tracks the time elapsed since the last excitation of
element. Each element is also assigned an internal param
TE , the exciting state duration, which is the amount of tim
an excited element contributes to the excitation of its nei
bors ~defined as elements located inside its interact
circle!. The value ofTE for CA trigger waves must be infin
ity since these waves ‘‘propagate’’ infinitely long at ze
speed.~In RDE models, the analogous property is the pr
ence of nonzero excitatory source current over theu region
delimited byui,u<u1 , which locally requires an infinite
transition time to traverse!. The stateU of an element can
assume two values,U50 and U51, which correspond to
the resting and excited states, respectively. The CA trans
rule states that thekth element switches from the restin
state to the excited state at the next time stepDt when the
‘‘total source’’ Qk contributed by its neighbors equals~or
exceeds! its threshold valueKk ~the ‘‘sink’’ !, that is, when

Qk5 (
neighbors

wk jU j>Kk , ~10!

where the sum represents the total source~the summation
index j runs over all elements in the neighborhood of e
mentk), andwk j is a weighting distribution determining th
relative contribution of elementj to the excitation of elemen
k(0<wk j<1). As in Ref. @7#, we shall study the simples
case withwk j[1 for all elements. For this realization of th
model, the sourceQk for trigger waves is always equal to th
number of excited elements inside the neighborhood circ

The sum in Eq.~10! is an exact representation of an int
gral on a discrete lattice. This allows us to write the gene
CA transition rule for trigger waves in the compact form
de-

e

l-
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l

Un11~x!5Un~x!1@12Un~x!#US 2Kn11~x!

1E w~x82x!Un~x8!dx8 D , ~11!

wheren is the discrete time index,U( ) is the Heaviside step
function, w(x82x) is the weighting function describing th
relative contribution of the neighbor atx8 to the excitation of
the element atx, andKn11(x) is the excitation threshold o
the element atx at time stepn11. Note that our randomiza
tion of the lattice means that a complete simulation m
incorporate an ensemble of systems that produce the ex
tation value ofUn11(x). Thus the complete form of Eq.~11!
must incorporate the ensemble averaging of the right-h
side of Eq.~11! at each time step. For one particular realiz
tion of the lattice randomization, a trigger wave solution
Eq. ~11! corresponds to a moving spatial discontinuity in t
U field.

We simulate the effect of the ‘‘recovery’’ process o
propagation by introducing a factorS(S,1) under the inte-
gral in Eq. ~11! to describe the decrease of an excited
ement’s ‘‘source intensity’’~its ability to excite its neigh-
bors! with its phaseT. This modification is suggested by ou
earlier analysis of the RDE trigger wave and solitary pu
source currents in the front transition zone. This revea
that the excitatory source current of the pulse reduces w
time relative to that of the trigger wave, witht50 set by the
passage of a suitably defined wave-front edge. This effec
formally described in the CA model by introducing a phas
dependent, continuous-valued state variableU5U(x,T),
which without loss of generality can be factorized into t
original binary variableU5U(x), and a phase-depende
source intensityS„x,T(x)… describing the local falloff of the
source intensity. In a uniform medium, the source intensi
S depend only on the local phase of the elementsT(x), so
the expression for the total sourceQn(x) becomes

Qn~x![E w~x82x!U~x8!S„T~x8!…dx8, ~12!

where the functionS satisfiesS(0)51 andS8(T)<0 for T
>0. For simplicity, we consider a simple one-parame
family of functionsSg5s(gT), wheres( ) is a fixed mono-
tonically decreasing function of a dimensionless argum
that specifies the model of recovery under consideration.
constantg is a recovery rate with a dimension of invers
time. We explored several functionss(gT) and obtained
very similar results.

Since we are currently only interested in the behavior
wave fronts, we choose the simplest representation of
wave back: The transition out of the excited state is
‘‘phase’’ wave controlled solely by the local dynamic
~phaseT) at pointx. In this case, the transition to the restin
state occurs at a particular phaseT5Tp(x), whereTp(x) is
the local duration of the pulse plateau. It follows that t
exciting state durationTE(x) must satisfyTE(x)<Tp(x).
The coupled equations describing the state transitions in
CA medium are thus
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Un118 ~x!5Un~x!1@12Un~x!#U„Qn~x!2Kn11~x!…,
~13!

Un11~x!5Un118 ~x!U„Tp~x!2T~x!…, ~14!

whereQn(x) is given by Eq.~12!. A typical 1D U solitary
pulse in a uniform medium traveling at speedc0 will have a
rectangular shape with unit height and widthc0Tp when
viewed in a reference frame traveling with the wave.

IV. CA SOLITARY WAVE FRONTS IN ONE DIMENSION

The dynamical equations~13! and~14! can be treated ana
lytically for the case of 1D solitary fronts. The notation
introduced in Fig. 3. The resting element at pointO is chosen
to be the element excited at the next time stepDt. The ap-
proaching wave of excited (U51) elements is shown as th
cross-hatched region. The element at pointO switches to the
excited state and the wave frontMN shifts by the distance
c0Dt when the argument of theU function in Eq.~13! be-
comes positive. This excitation condition is the margin
case where the total sourceQ(x) exactly equals the threshol
valueK(x) at pointO:

K5Q[E w~x8!U~x8!Sg„T~x8!…dx8. ~15!

For a wave steadily propagating with speedc0, the phase
T(x8) at a pointx8 situated at a distanceD behind the front
is given byD/c0. SinceD can be written asD5ux82x0u,
wherex0 is the coordinate of the edge of the front, we ha
T(x8)5D/c05(x02x8)/c0. For a uniform medium with
given w and Sg , Eq. ~15! establishes the relation betwee
the thresholdK, the recovery rate constantg, and the propa-
gation speedc0.

We now seek the functionc0(K,g) for the simplest
weighting functionw5U(L22x82 ) ~a flat distribution over
the interval@2L,L# with unit height! and a linear depen
dence of the source intensityS on the phaseT. We shall
consider two cases:~i! a function S(T)512gT ~and TE
5`), which may become negative, thereby severely inhi
ing the wave-front transition for largeg or slow speed, and
~ii ! a piecewise linear functionS(T)5(12gT)U(12gT),
which vanishes forT>1/g and thus satisfies the requireme

FIG. 3. Geometry for calculating the propagation speedc0 of a
1D solitary front in the CA model~the underlying grid with spacing
Dx is omitted!. The neighborhood of pointO is the segment
@2L,L#, whereL is the neighborhood ‘‘radius.’’ The wave fron
edgeMN shifts to the pointO at the next time stepDt when the
total source strengthQ provided by the excited elements~cross
hatched! equals the excitation thresholdK of the element at point
O.
l

-

S>0. The second case is identical to settingTE51/g. We
also assume thatTp5` for all elements, so that there is n
wave-back transition. For both cases ofS, Eq. ~12! for the
total sourceQ becomes in dimensionless form

Q̂5E
ĉ0

xmH 11ĝS 12
x̂

ĉ0
D J dx̂, ~16!

where Q̂5QDx/L, ĉ05c0Dt/L, x̂52x8/L, ĝ5gDt, and
we have used the fact thatx052c0Dt. In case~i! the upper
limit of the integralxm51 and in case~ii ! the upper limit is
determined by the requirementS>0, which yields

x̂m5H 1 if ĉ0>ĝ/~11ĝ !

ĉ0~11ĝ !/ĝ otherwise.
~17!

The dependencec0(K,g) is found by calculating the integra
in Eq. ~16! and using the excitation condition~15! in the
form K̂5Q̂, where K̂5KDx/L. In the case with the con
straintS>0 we find

K̂55 11ĝ2 ĉ02
ĝ

2S ĉ01
1

ĉ0
D if ĉ0>ĝ/~11ĝ !

ĉ0

2ĝ
otherwise.

~18!

One can check that the two pieces on the right-hand sid
Eq. ~18! match smoothly atĉ05ĝ/(11ĝ). For the case
without the constraint, the expression in the first line of E
~18! determines the entire relationc0(K,g) for all ĉ0
>ĝ/(ĝ12).

The attractiveness of this simple one-dimensional
ample is that we readily see that for fixedĝ, the threshold
and the speed are linked by a simple equationf (K̂,ĉ0)50,
where f is an explicit function depending onĝ as a param-
eter. In case~i!, whenS is allowed to be negative, we obtai
the family of hyperbolas shown in Fig. 4~a! ~each curve is
labeled by itsĝ value!. In Fig. 4~b! we show the analogou
plot obtained for a RDE model with kinetic functions simila
to Eqs.~3!–~5! @31#. These curves are similar to those orig
nally obtained by Rinzel and Keller@18#, who proved that
the slow speed solutions below the knee were unstable.
broadly believed that this is true in the general case o
current i (u) with three nodes@32#. In Appendix A we
present a formal proof that the lower branch is also unsta
in our CA model. The basic structure of the RDE and C
solutions is remarkably similar. This correspondence is a
evident in the plot ofĉ0 versusĝ for fixed threshold values
K̂. This family of curves and the analogous family for th
RDE model are shown in Figs. 5~a! and 5~b!, respectively.

The intuitive appeal of our CA approach can be appre
ated by a comparison of the dimensionlessc0(K,g) in Fig.
4~a! with that in Fig. 6, which is similar to Fig. 4~a!, but
obtained with the restrictionS.0 @case~ii !#. While each
stable branch~including the knee point! remains unchanged
the behavior of the slow speed~unstable! branches in Fig. 6
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is qualitatively different. To see the physical meaning of t
discrepancy, we first point out that when the plot of the
action source current in Fig. 2~b! for the RDE solitary pulse
is extended to large negativej, we find that the wave-back
transition is accompanied by large, positive~deexcitatory!
currents. If we interpret the CA inhibitory process as a
covery process responsible for initiating a wave-back tra
tion, then case~i! for S would be the appropriate physica
model, as negativeS could be associated with the wave-ba
transition. For the slowest-speed unstable solutions in
4~a!, regions with negativeS intrude in the CA interaction
region. Due to the remarkable similarity of the RDE and C
slow-speed solution branches in Fig. 4, we infer that for
slowest-speed unstable RDE waves, the wave-back trans
must interfere with the formation of the front. Such solutio
must undoubtedly be unstable. Our CA model’s simplic

FIG. 4. ~a! Dependence of the solitary front speedĉ0 on excita-

tion thresholdK̂ for selected fixed recovery rate constantsĝ ~la-
beled on each curve! in our CA model~a! @case~i!, with no restric-
tion on the sign ofS# and~b! the analogous plotc0(u* ) for a RDE
model similar to the system~3!–~5! @31#. In ~b!, the « values are
labeled on each curve. The slow-speed~dashed! solutions on the
lower branches in~a! represent unstable CA wave-front configur
tions ~see the proof in Appendix A!. The instability of the slow-
speed solution branch is broadly believed to be a general featu
continuous RDE systems@18,32#.
s
-

-
i-

g.

e
on

allowed us to ascertain the physical source of this instab
in the RDE system without resorting to more formal ma
ematical analysis.

V. CA PLANE-WAVE FRONTS

The geometry for computation of the plane-wave speed
two dimensions is shown in Fig. 7. The overlap of the d
main of excited elements with the circle is outlined in bo
The wave frontMNPQ shifts to the pointO at the next time
step when the total sourceQ supplied by excited element
equals the threshold valueK at pointO in accordance with
Eqs. ~12! and ~13!. The new wave-front position shifted b
the distancec0Dt after one time step is shown by the dash
line. We again assume a linear falloff of the local sour
intensityS(T) and omit the restrictionS>0. The expression
determining the total sourceQ is found by integrating
S„T(x)… with the weightw(r) over the region outlined in
bold in Fig. 7. Since we assume steady propagation, the l
phaseT of elements on the circular arc~hatched! is equal to
D0(f)/c0, where D0 is the distance from the wave-fron

of

FIG. 5. ~a! Dependence of the 1D solitary front speedĉ0 on

recovery rate constantĝ for selected fixed threshold valuesK̂ ~la-
beled on each curve! in our CA model@case~i!, with no restriction
on the sign ofS# and~b! the analogous plotc0(e) for the same RDE
model as in Fig. 4~b!. In ~b!, the u* values are labeled on eac
curve. The solutions on the lower branches are unstable.
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edge MNPQ. The local phaseT(x) is thus given by
@r cos(f)2c0Dt#/c0. The excitation condition in dimension
less form can be written as

K̂5Q̂54E
ĉ0

1

w~ r̂ !r̂ dr̂E
0

v~r̂; ĉ0!H 12ĝ
r̂ cosf2 ĉ0

ĉ0
J df,

~19!

where Q̂52QDx2/R2 and K̂52KDx2/R2 are the rescaled
total source and threshold, respectively, andĉ0

5c0Dt/R, r̂5r/R, andĝ5gDt. As can be seen in Fig. 7
the upper limit of the integral isv( r̂; ĉ0)5arccos(ĉ0 / r̂).

FIG. 6. Dependence of the solitary front speedĉ0 on excitation

thresholdK̂ for selected fixed recovery rate constantsĝ ~labeled on
each curve! in our CA model with the restrictionS>0 @case~ii !#.
The knee positions are identical to those in Fig. 4~a!, but the slow
speed branches are qualitatively different~see the text!.

FIG. 7. Geometry for calculating the plane-wave speedc0 in the
2D discrete model with circular support (0<r<R) of the weight
functionw5w(r) ~point O is the center of the neighborhood!. The
underlying grid is omitted. The wave frontMNPQ shifts to the
point O at the next time stepDt when the total source strengthQ
provided by excited elements inside the region outlined in bold
given by Eq.~12! equals the excitation thresholdK at pointO. The
new position of the wave front is shown as the dashed line.
angle definitions for integration are indicated.
Using the specific casew( r̂)5U(12 r̂), we interchange the
order of integration and directly evaluate the integral

K̂52V~11ĝ !2
2A12 ĉ0

2

ĉ0
H 2

3
ĝ1 ĉ0

2S 11
ĝ

3
D J , ~20!

whereV5arccosĉ0. This is an implicit equation determin
ing the dependencec0(K,g) for 2D plane-wave fronts.

For 2D plane-wave fronts, the family of curvesĉ0(K̂) for
varying ĝ is similar to that obtained for the 1D case@Fig.
4~a!#. In the (K̂, ĉ0) plane, the knee coordinates trace ou
neutral stability curve (ĝ is the parameter! that divides the
plane into regions with stable and unstable wave-front so
tions. For the 1D and 2D cases, we can find this parame
zation explicitly by finding the extrema of the equatio
K̂( ĉ0,ĝ), which gives

ĉknee5Aĝ/~ ĝ1d11!, ~21!

whered is the dimension~1 or 2!. The knee speeds increas
monotonically withĝ and approach unity asymptotically a
ĝ→`. The monotonic growth ofĉknee(ĝ) is physically sen-
sible since for a fixed threshold an increase in the knee sp
is needed to compensate for the increase in the recovery
ĝ so thatQ5K is satisfied. This is because the decremen
sourcegT is proportional tog/c0. Expression~21! allows us
to find the neutral stability curves in the (ĝ,K̂) plane by
simply substituting into Eq.~18! ~1D! and Eq.~20! ~2D!,
respectively. These curves are plotted in Fig. 8. WhenK̂ is
treated as the independent variable, the curves in Fig. 8
also be interpreted as representing the relationĝ5ĝmax(K̂),
which expresses the fact that for eachK̂, there is a maximum
permissible recovery rate constantĝ5ĝmax for a stable front.

d

e

FIG. 8. Renormalized knee thresholdsK̂/K̂max versus the recov-

ery rate constantĝ for 1D solitary front and 2D plane-wave fronts
These curves are neutral stability curves that divide the plane
stable and unstable front solution regions. The curves may als
interpreted as representing the maximum recovery rate cons

ĝmax as a function of the thresholdK̂. @Wave fronts with a givenK̂

can propagate only ifĝ<ĝmax(K̂).#
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For the 1D case, these maxima correspond to the knee p
of the curves shown in Fig. 5~a!.

The stable branches ofĉ(ĝ) for 2D plane waves given by
Eq. ~20! for selected fixed thresholdsK̂ are shown in Fig. 9
along with the results of CA simulations~dots!. For smallĝ,
these curves may be approximated with the same preci
as in the RDEs@Eq. ~6!# by a function ĉ0(ĝ)5Ĉ02x8ĝ,
whereĈ0 is the trigger wave speed and the constantsx8 and
Ĉ0 depend on the thresholdK̂. The simulations were per
formed on a 2D lattice with a periodic boundary condition
one direction~a cylinder!. The CA elements were all as
signed identical radiiR and thresholdsK. We computed the
speed of the plane waves by tracking the position of
wave-front edge~averaged over random seed point locatio!
after each time step. The points in Fig. 9 are the aver
speeds and the error bars correspond to one standard d
tion and reflect the intrinsic fluctuations induced by the ra
domization of the lattice. For the chosen threshold val
~low excitabilities!, the agreement between the theoreti
curves and the CA simulations is excellent. The largesĝ

simulation value shown for eachK̂ was the maximum value
for which the wave fronts were stable. There are two reas
for the deviations from the theoretical curves at largeĝ ~near
the knee!. The first is due to the approximation of continuo
phase used in Eq.~19! and the second is the specific meth
of assigning the actual element phases in the CA simulati
which we discuss in Appendix B.

VI. CA WAVE FRONTS WITH CURVATURE

In order to analyze the propagation of a curved CA so
tary wave front, we evaluate the integral in Eq.~12! by ap-
proximating the front locally by a circle of radiusr as shown
in Fig. 10. For convenience, we define the dimensionle
rescaled curvatureh[Rk[6R/r , with plus and minus cor-

FIG. 9. Dimensionless plane-wave speedc0Dt/Dx versus re-

covery rate constantĝ for selected~high! excitation thresholdsK̂
~low excitabilities!. The curves are the theoretical values obtain
using Eq.~20! and the dots are the averages obtained from sim
tions performed on a lattice withR/Dx512 and with a correction

for the discreteness of the phaseT̂ ~see Appendix B!. The error bars
represent one standard deviation and reflect the fluctuations ca
by the lattice randomization.
nts
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responding to concave and convex, respectively. The dom
of validity of the locality assumption~the approximation of
the front as a circle! is 2`<h<1 and is discussed in deta
in Ref. @7#. In the figure, the domain of contributing excite
elements to the excitation of the element at pointO is out-
lined in bold and the new wave-front position after one tim
step is shown by the dashed curve. The dimensiona
physical parametersĉ and h are linked to the integration
variables (r,f) via the expression for the quantityn5
6uO8Pu/R[6r 8/R,

n25 r̂21S ĉ2
1

h D 2

22r̂S ĉ2
1

h D cosf, ~22!

where r̂[r/R and we have adopted the same sign conv
tion for n as forh. The limits of thef integration for eachr
are from2v to 1v, wherev is found by settingn51/h
andf5v in Eq. ~22!. This yields

v5arccosH r̂22
2ĉ

h
1 ĉ2

2r̂S ĉ2
1

h D J . ~23!

To assign a phase valueT for each (r̂,f) we will also
require the expression for the distanceDù to the integration
point from the wave-front edgeABCDE directed along the
inward normal, which in dimensionless form is given b

D̂ù5n21/h ~see Fig. 10!. In the first approximation the

d
-

sed

FIG. 10. Geometry for calculating the propagation speedc of a
convex wave front in the CA model with a circular support (0<r
<R) of the weight functionw5w(r) ~point O is the center of the
support region!. The underlying grid is omitted. The wave fron
ABCDE shifts to the pointO at the next time stepDt when the
total source strengthQ provided by excited elements inside th
region outlined in bold and given by Eq.~12! equals the excitation
thresholdK at point O. The new position of the wave front is
shown as the dashed line. The wave front is locally approxima
by a circle with radiusr centered at the pointO8. The angle defi-
nitions for the integration are indicated.
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equation determining the phaseT of a point at a distanceD̂ù

from the front can be written as

T̂5

n2
1

h

ĉ
. ~24!

Generally, such a relation should incorporate the depende
on the specific history of evolution of the wave-front shap
Equation~24! is valid in the approximation where the fron
curvaturek is small and the speedc and curvature do no
change appreciably in the neighborhood of pointO ~‘‘steady
propagation’’!. This approximation is identical to that use
to obtain the eikonal relation~7! in RDE systems. Since th
variable n in expression~24! is a specific simple function
n( r̂,f; ĉ,h) determined by Eq.~22!, we have, according to
Eq. ~29!, T̂5T̂( r̂,f; ĉ,h) and the excitation condition~13!
applied to curved wave fronts becomes

K̂5Q̂[4E
ĉ

1

dr̂E
0

v~r̂; ĉ,h!
$12ĝT̂~ r̂,f; ĉ,h!%r̂ df,

~25!

where the anglev( r̂; ĉ,h) is given by expression~23!.
Given the functionT( r̂,f; ĉ,h), Eq. ~25! explicitly ex-
pressesK̂ as a function ofĉ, h andĝ. It also representsĉ as
an implicit function ofK̂, ĝ, andh. It is easy to check tha
in the limit h→0, Eq.~25! reduces to Eq.~19! and therefore
yields the correct transition to the plane-wave limit. The s
lutions of Eq.~25! must generally be found numerically. I
the following subsections, we consider the basic structur
these solutions and compare it to that found for typical R
systems.

A. The critical curvature

In Sec. V, we identified the knee points of the family
curvesĉ0(K̂) for varyingĝ as the points of marginal stabilit
of planar wave fronts. We now seek the dependence of th
knee coordinates on the wave-front curvatureh. For a fixed
value of ĝ, the solutions to Eq.~25! comprise a surface
F( ĉ,K̂,h)50 as shown in Figs. 11~a! and 11~b!. Since we
are treating the curvature as a perturbation to the plane-w
case, we expect that for each fixedh contour @Fig. 11~b!#,
the lower solution branch represents unstable curved w
front configurations. When the curvature effects are ta
into account, the knee coordinates trace out a param
curve in the (K̂,ĉ) plane with h as the parameter. If we
intersect the surfaceF with a cutting planeK̂5K̂15const,
with K̂1 less than the plane-wave (h50) knee threshold
value, we find that for each constanth contour we have two
intersection points, a fast speed on the stable branch a
slow speed on the unstable branch. The locus of these p
is the curve labeledĉ(h), which is the dependence of wav
front speed on front curvature forK̂5K̂1 and the specifiedĝ.
Whenh reaches the critical valueh5hc1, the two intersec-
tion points merge with the knee point ofĉ(K̂) as shown in
Fig. 11~b!. This defines for eachK̂ a critical point in the
ce
.
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(h,ĉ) plane whose coordinate depends parametrically on
ĝ value used to specify the surfaceF. The h coordinate of
this point we call the critical curvaturehc1 and theĉ coor-
dinate we call the critical speedĉ1. The critical curvature is
~approximately! the maximum curvature at which a continu
ous convex wave front can stably propagate and is assoc
with a nonzero critical speed. This definition of the critic
point is strictly valid in the stationary propagation approx
mation. When this approximation is not valid, the surfaceF
is not unique and will depend on the specific history of ev
lution used to determine the phase functionT( r̂,f; ĉ,h) in
Eq. ~25!.

FIG. 11. SurfaceF( ĉ,K̂,h)50 ~a! obtained from numerical so

lution of Eq. ~25! for a fixed recovery rate constant (ĝ50.5) and
~b! a set of its fixedh contours. At each fixedh, the lower branch
of the contour~below the knee! represents unstable wave-front s

lutions. The curve labeledĉ(h) in ~b! is the locus of points obtained

by intersecting the surfaceF with the cutting planeK̂5const5K̂1.

This curve represents the dependence of the front speedĉ on the

front curvatureh for fixed K̂ and ĝ. Its lower branch is unstable

Theh coordinate of the knee point ofĉ(h) is the critical curvature
hc1 ~see text!. Note also that the associated critical speedc1 is
nonzero.
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57 7035WAVE-FRONT PROPAGATION IN A DISCRETE MODEL . . .
In their analysis of the relationc(k) in RDE systems,
Mikhailov and Zykov@29# defined the critical curvature an
speed for continuous wave fronts via the conditiondc/dk
5` for a fixed thresholdu* , fixed «, and k small. It is
evident from Fig. 11~b! that in our CA model the condition
dĉ/dh5` is satisfied at our critical point (ĉ1 ,K̂1 ,hc1),
where the stable and unstable branches ofĉ(h) meet. Thus
our definition is equivalent to Mikhailov and Zykov’s. Sinc
the critical point in the CA model is also associated with t
knee of ĉ(K̂), we see that it is indeed a point of margin
stability. In Fig. 12 we plot the magnitude of the critic
curvature versusĝ for two selected values ofK̂. At the left
edgeĝ50 we get the trigger wave critical curvature, whic
is associated with a zero speed wave front. The critical c
vaturehc1 decreases to zero at a certain pointĝ5ĝmax(K̂).
This is physically sensible sinceĝmax(K̂) is the knee value a
which plane waves become marginally stable. The RDE n
tral stability curvekc1(«) shown in Fig. 8 of Ref.@29# is
very similar to our CA modelhc1(ĝ).

B. The Eikonal relation

We now consider the variation ofĉ(h) with ĝ and ana-
lyze its behavior at small curvaturesh where the linear or
eikonal approximationĉ5 ĉ01D̂8h is applicable. The stable
branch of the curveĉ(h) for fixed K̂ and ĝ shown in
Fig. 11~b! is monotonically decreasing withĉ(0)5 ĉ0 and
ĉ(hc1)5 ĉ1. In Fig. 13 we show a family of curvesĉ(h) for
a fixed thresholdK̂ and selected values ofĝ. We shall call
such a curve a nonlinear curvature relation. The bold cu
represents the trigger wave case (ĝ50). The curves are
fairly linear at smallh and strongly nonlinear near the crit
cal curvature, where the derivativedĉ/dh increases dramati
cally and becomes infinite at the critical point. The variatio
of the critical curvature, critical speed, and plane-wave sp

FIG. 12. Critical curvaturehc1 versus recovery rate constantĝ

for two selected values ofK̂. The curves are very similar to tha
obtained for a RDE model by Mikhailov and Zykov~see Fig. 8 of

Ref. @29#!. For each thresholdK̂, the critical curvature must go to

zero whenĝ reaches its knee value for plane wavesĝmax(K̂) ~see
curves in Fig. 5!.
r-

u-

e

s
d

with ĝ are clearly seen: As the recovery rate increases,
curve and its critical point are drawn toward theĉ axis and
the plane-wave speed~the intercept with theĉ axis! de-
creases. Atĝ5ĝmax(K̂), the curve will collapse to a single
point on theĉ axis ~corresponding to zero critical curvature!
since this is the point of marginal stability~knee! for plane
waves. It is also evident from the figure that the derivat
D̂85dĉ/dh at h50 is an increasing function ofĝ that will
diverge asĝ approachesĝmax(K̂). The ĝ dependence of ou
CA eikonal relation thus has the same characteristic feat
as the« dependence of this relation in RDE systems@see Eq.
~9!#. We computed the CA dependence of the slopeD̂8

[(dĉ/dh)uh50 on ĝ numerically via Eq.~25! for selected
fixed values ofK̂. The results are shown in Fig. 14. Th
slopeD̂8 increases monotonically withĝ and indeed begins
to diverge asĝ approaches its maximum value~shown by the
dashed lines in the figure!. Whenĝ50, the slope is the trig-
ger wave value and can be identified as the effective di
sion constant of the CA medium.

To examine the domain of validity of the steady propag
tion approximation and the numerically evaluated eiko
parametersD8 and ĉ0 for the CA medium, we performed
simulations of evolving circular waves for various initia
configurations. Excited circular regions of different siz
~with S initialized to 1.0) were created and the instantaneo
wave-front speeds and front curvatures were calculated
measuring the average radial distance^r n& to elements on the
front ~defined as excited elements with at least one adjac
resting neighbor! at time stepn. The instantaneous spee

FIG. 13. Propagation speedĉ versus curvatureĥ for fixed

thresholdK̂50.9p and selected values of the recovery rate const

ĝ. The curve for trigger waves (ĝ50) is shown in bold and is
approximately linear due to the choice of a high excitation thre
old. The slow speed~unstable! solutions are shown by the dashe

portions of the curves. The dependenceĉ(h) for eachĝ becomes
strongly nonlinear near the critical curvaturehc1, where the deriva-

tive dĉ/dh becomes infinite. The plane-wave speedĉ0 ~the inter-

cept with theĉ axis! decreases withĝ. Note that the slope ath

50 also depends on the recovery rate constantĝ. For the trigger
wave case, we may identify this slope with the effective diffusi
constant of the CA medium.
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measured in lattice units per time step was given by^r n11&
2^r n& and the dimensionless curvatureh was 2Rd /^r n&,
where Rd is the neighborhood radius measured in latt
units. The values of the CA parametersR, K, Dt, andg
were chosen by adjusting the CA model to the specific R
system used in Sec. VII. The stable~solid! and unstable
~dashed! branches of the CA modelc(k) obtained via solu-
tion of Eq.~25! for these parameter values are shown in F
15. The circles in the figure represent the theoretical evo
tion of two different sized circular excited regions comput
directly via numerical solution of equations~13! and ~14!
with Tp5`. The solid diamonds show the results of thr
different simulations~each with a different lattice random
ization! at each initial configuration in the CA model. Th
fluctuations induced by the lattice randomization are evide
but the agreement with theoretical predictions is very go
We see that for small to moderate curvatures, a linear eiko
relation c5c01D8k adequately represents the behavior
the CA wave fronts in all three approaches represented in
figure.

Two important features of excitable media can be illu
trated using Fig. 15. First, notice that at large curvatures n
the critical valuekc1, the actual speed-curvature dependen
is sensitive to the initial conditions, but as the magnitude
the front curvature decreases, the points converge to the
linear curvature relationc(k) obtained assuming stead
propagation. This dependence on the history of evolut
means that a unique critical curvature may not exist in ex
able media. The critical valuekc1 defined above is approxi
mately realized only for the special history-independent c
of a spiral wave front steadily rotating around a minima
sized, impenetrable hole. This was successfully dem
strated for a RDE system in Ref.@29#. The second importan
feature is that the inhibitory process affects the specific s
strength-duration relation for applied stimuli that can su
cessfully generate propagating waves@33–35#. For the two
cases shown in Fig. 15, the duration of the stimulus was
time step and for an initialS value of 1.0 we found that a

FIG. 14. SlopeD̂5dĉ/dhuh50 versus recovery rate constantĝ

~solid lines! for selected fixed thresholdsK̂. The slope is a mono-

tonically increasing function ofĝ that diverges asĝ5ĝmax(K̂) ~in-

dicated by the vertical dashed lines!. The maximumĝ values cor-
respond to the case of marginal stability of plane waves at
corresponding thresholds.
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minimum circle radius~with a maximum curvature! was re-
quired to generate an outgoing wave~for smaller radii the
wave died out!. The ‘‘threshold’’ radius case is represente
by the lower set of points in the figure. When we applied t
stimulus for a longer duration~not shown! with S maintained
at 1.0 for multiple time steps, smaller excited circles~with
larger curvatures than the threshold value! successfully pro-
duced propagating waves. Physically, this is due to the re
dation of local recovery effects in the stimulated region v
‘‘currents’’ supplied by the stimulating device itself. W
plan a thorough analysis of this phenomenon in a fut
study.

VII. CA SPIRAL WAVE FRONTS

As a final illustration of the correspondence between
CA model and RDE models of the form~1! and ~2!, we
consider a steadily rotating spiral wave in the CA mod
adjusted to a particular RDE system. In contrast to the sim
lations depicted in Fig. 15, where the front speeds and fr
curvatures vary with time, a steadily rotating spiral is
steady-state configuration~in a rotating reference frame! in
which the front curvature and speed~in the normal direction!
vary according to a specific function of arclength along t
spiral arm. ~The stationarity of the spiral in the rotatin
frame may just be a first approximation. In reality, the infl
ence of the exponentially decaying tail of the wave may
troduce a small but ever-present, nonvanishing perturbati!
Since we are currently considering wave fronts that do
interact with wave tails, we are restricted to a specific cl
of spiral waves for our analysis. The dynamics of spi

e

FIG. 15. Wave-front speedc versus front curvaturek in the CA
model adjusted to a particular RDE system. The CA param
values are listed in Fig. 16. The stable~solid line! and unstable
~dashed line! branches ofc(k) were obtained from numerical solu
tion of Eq. ~25!, which assumes stationary~steady! propagation.
The open circlesO represent the instantaneousc and k obtained
from direct numerical solution of the evolution equations~13! and
~14! for two specific stimulated (S51.0, Dt51) circular domains.
The diamonds are the results of three different CA simulatio
~with different lattice randomizations! at each of the two initial
conditions. The deviation from the steady propagation approxim
tion at large curvatures is evident, as is the dependence on
specific initial condition. As the curvature magnitude decreases,
speeds and curvatures approach the stable branch ofc(k) asymp-
totically.
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waves is controlled by the medium’s excitability, the rate
recovery of excitability following the wave-back transitio
and the boundary conditions. If the extent of the medium
sufficiently large and the excitability is sufficiently wea
spiral waves rotate around a quiescent~unexcited! circular
core at a unique characteristic frequency of the medium
the ‘‘thin arm’’ regime@15#, the interaction of the wave fron
with its previous wave tail is negligible and the front speedc
is determined almost entirely by the nonlinear curvature
lation c(k) ~provided the front curvature radius near the s
ral tip is much larger than the wave-front thickness@3,15#!.
In this domain, the motion of most of the spiral~away from
the tip! is well described via a kinematic model@27,36#, in
which the wave is treated as a curve in the plane that ob
certain equations of motion that depend onc(k). The kine-
matic analysis of spirals in RDE systems has proved succ
ful in describing the results of numerical solutions@29#. Here
we check the predictions of kinematic theory in our C
model by directly comparing the CA and RDE spiral so
tions for the CA model adjusted to a specific RDE system

We use a RDE system with kinetic functions~3! and ~4!
and the currenti (u) given by

i ~u!5H s1u when u<u*
s2~u21! when u.u* .

~26!

Based on trial solutions and recent studies of this system@4#,
we found that the parameter valuess151.0, s251.0, z
57, «50.02, andu* 50.25 yielded a spiral wave satisfy
ing the thin arm requirement. The trigger wave speedC0 and
the trigger wave critical curvaturekcr were calculated for
these parameter values using the expressions in Refs.@7,17#.
We obtainedC051.15 andkcr50.94 ~in the chosen units
D51.0). The plane solitary wave speedc0(«) was measured
via numerical solutions using explicit Euler integration f
the recovery equation~2! and a forward time-centered finite
difference scheme@37# for the diffusive equation~1!. For the
discretizationsh50.2 ~grid spacing! and dt50.002 ~time
step!, the measured plane-wave speed wasc051.0. The du-
ration of the plateau phase for the plane wave was 6.95~de-
fined as the time interval between the crossings atu5u* )
andTp andTE were set equal to this value in the CA mode
The medium was considered fully recovered whenv re-
turned to 0.02, which occurred atT526.65.

The procedure for computing the CA parameter values
the medium in the trigger wave limit is described in Ref.@7#
and uniquely determines the values of the circle radiusR, the
scaled thresholdK̂, the time stepDt for given RDE solution
values ofC0 and kcr , and the RDE diffusion constantD.
The remaining CA model parameter valueĝ is found by
equating the plane-solitary-wave speedc0 to the quantity
ĉ0R/Dt, with C0 obtained from Eq.~20!. To simulate an
infinite medium, we also had to use no-flux boundary con
tions along the edges of the grid. These conditions were o
implemented approximately@38#, but the measured CA spi
ral period and shape~see below! did not change noticeably
when the domain size was increased by 25%. Our appr
mation was thus sufficient for our present purposes.

We created the spiral waves via a broken plane-wave
tial condition. The numerical solution of the RDEs and t
f
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CA spiral wave are shown in Fig. 16. In both pictures, t
grid spacingDx is approximately 0.2 and the grid size
2503250. White regions represent resting elementsv
,0.02 in the RDEs!, black represents excited elementsu
.u* in the RDEs!, and gray regions represent unexcit
~recovering! elements. The rotation periods are 73.3 and 7
in the CA and PDE models, respectively. Note that the sp
shapes are practically identical along the spiral arm excep
the vicinity of the core. In this region, the specific value
TE and also the details of the wave back transition are
portant in determining the CA spiral tip shape and the ro
tion period. The almost exact correspondence of the CA
RDE periods was thus fortuitous. According to the kinema
theory of spirals, for a spiral with a given rotation period, t
shape away from the tip is unique and depends only onc(k)
@29#. The remarkable similarity of the CA and RDE spira
suggests that this dependence must be roughly the sam
both systems. We computed the slopeD8 of the eikonal re-
lation for the RDE system using expressions~6! and~9! and
found D8'1.14, which is in good agreement with th
ĝ-dependent CA model value of 1.19. Good corresponde
was also obtained when the grid spacing in both models
reduced by 50%~the stability of the solution method als
required the reduction of the RDE model time step!. The
consistency of the CA spiral shape with that predicted by
kinematic theory of spiral waves for ourc(k) was studied in
detail in Ref.@39# and excellent agreement was found.
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FIG. 16. ~a! Spiral waves in the RDE model~1! and ~2! with
kinetic functions~3! and~4! and i (u) given by Eq.~26! and~b! the
CA model adjusted to the RDEs. The RDE model parameter va
were s151.0, s251.0, u* 50.25, z57.0, and«50.02. The
CA parameter values obtained using our adjustment criteria w

R51.65, Dt50.42, K̂52.025, andĝ50.044. The black re-
gions are excited elements~u>u* in the RDEs!, gray regions are
recovering, and white regions are resting. The rotation periods
approximately the same:~a! Tspiral571.3 and~b! Tspiral573.3.
The correspondence between the spiral shapes is excellent, e
near the spiral core. Since the ‘‘eikonal’’ relationsc(k) in both
systems are approximately the same, kinematic theory demands
the shapes along the arms agree since the shape is uniquely
mined byc(k) for a given rotation frequency in a sufficiently larg
medium@29#.
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APPENDIX A: INSTABILITY OF THE LOWER BRANCH
OF c5c„K…

We consider a 1D solitary wave that propagates stea
along thex axis and define its propagation speedc to be the
dimensionless distance that the wave front shifts in one t
stepDt. For 1D solitary pulses and 2D plane waves, the C
time step can be chosen freely@7# and for convenience we
choose it in such a way that the radiusL of the neighborhood
@2L,L# is an integer multiple ofc:

c~m11!5L, ~A1!

wherem is an integer andL51 in our chosen units. For a
steadily propagating wave, the local source intensityS„T(x)…
is a stepwise function~a staircase with equal step widths! as
shown in Fig. 17. We now slightly perturb the position of t
front so that the width of the first step becomesc(1)5c
1dc(1). We consider a negative perturbationdc(1),0,
which we believe must be the most dangerous, as suc
perturbation leaves a solution on the lower branch oc
5c(K) on the lower branch. At the instant we perturb t
front position, the source contribution from steps 2,3, . . . ,m
on the staircase does not change, while the source cont
tion of the front step decreases byudc(1)u. Now, in order to
satisfy the excitation conditionQ5K ~conservation of sourc
ing! this decrease must somehow be compensated. This
come only from the rear of the sourcing zone~near the
neighborhood boundary! which is forced to overlap a portion

FIG. 17. Perturbation of the 1D CA wave front. The neighbo
hood radiusL is indicated by the solid horizontal bars. The sour
strength of each element in the transition regionL depends on its
phaseT and the recovery rate constantg: S(T)512gT. For a
steadily propagating wave, the spacing between zones of equS
values is given by the propagation speedc. The initial perturbation
of the front edge by the amountdc(1) requires a shift in the neigh
borhood by a distancedx(1) in order for the integralQ of the
sources inside the transition zone to remain equal to the excita
thresholdK. This shift results in a perturbation of the front spe
dc(2) at the next time step and so on. Afterm steps, the spacing
between the equalS value zones is no longer uniform, but the su
of these spacings can be used to estimate the magnitude of the
speed perturbationdc.
ly

e

a

u-

an

of stepm11, which has a source intensity 12gm. @Recall
that in our model the source intensityS is 12gT(x), thus
the source intensity of thej th step isSj512g( j 21).# The
rear boundary of the transition zone must shift backward
to the perturbation by somedx(1)(dx(1),0), which can be
found from the condition of conservation of sourcing (
2gm)dx(1)5dc(1). SinceL is fixed, this gives rise to a per
turbation in the position of the front at the next time step,
that two sourcing steps now possess perturbed widths. At
next time step, the third step width is perturbed and so
until the width of themth step is perturbed.~One can show
by direct calculations that the signs of all the respective p
turbations are the same as that ofdc(1): all steps become
shorter, which is true for any source that decreases w
time.! The backward shift of the rear boundary of the neig
borhooddx(m) arising afterm time steps is related to th
radius of the neighborhood, the widthsc1dc( i ) of the firstm
steps (i 51,2, . . . ,m), and the final perturbation of the spee
dc by the condition that their widths sum up to the neig
borhood radius

2dx~m!1mc1(
i 51

m

dc~ i !1c1dc5L. ~A2!

Using Eq.~A1! we reduce Eq.~A2! to

dc5dx~m!2(
i 51

m

dc~ i !. ~A3!

Now the conservation of sourcing can be written as

~12gm!dx~m!5(
i 51

m

@12g~ i 21!#dc~ i !. ~A4!

Eliminating dx(m) from Eqs.~A3! and ~A4! we have

dc5(
i 51

m
g~m112 i !

12gm
dc~ i !5

g

12gm(
j 51

m

j dc~m112 j !.

~A5!

Using the fact that alldc(k) have the same sign, we can no
estimate the perturbationdc as

udcu5
g

12gm(
j 51

m

j udc~m112 j !u>
gudc~ j !umin

12gm (
j 51

m

j .

~A6!

This finally yields

udcu.
gm2

2~12gm!
udc~ j !umin[qudc~ j !umin . ~A7!

If the factorq is greater than unity

q5
gm2

2~12gm!
.1, ~A8!

then after eachm steps the minimum perturbation acquir
the factorq and therefore grows as a geometric progress
with the common ratioq1/m.1. Now in the 1D case unde
consideration, one can readily prove that the condition~A8!
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is equivalent to the requirement that the speedc belongs to
the lower branch of the curveK5K(c). Indeed, one can
determine the marginal value of the speed that separate
upper and lower branches by taking a derivative of Eq.~18!
and setting it to zero, which according to Eq.~21! yields

1

c0,min
5A11

2

g
, ~A9!

and using Eq.~A1! we finally obtain

mmax5211A11
2

g
. ~A10!

Now one can readily check that the conditionm,mmax is
equivalent to the condition~A8!, which completes our proof
The above analysis reveals the remarkable fact that the
ponential growth of the perturbations does not occur w
each time step but rather takes place after each time the w
shifts the distanceL. This confirms our previous identifica
tion of the neighborhood radius as the intrinsic physi
width of the excitation wave front@7#.

APPENDIX B: CORRECTION FOR DISCRETE TIME
IN THE CA MODEL

While the lattice randomization in the CA model provid
the correction for the discreteness of space~i.e., it guarantees
rotational and translation invariance on the average!, the ba-
sic CA model provides no similar averaging in the time d
main. This limitation cannot be overcome by simply furth
reducing the time step value, since in our simple fo
parameter model for nonplanar wave fronts, this quantity
fixed by the requirements of the correct trigger wave lim
@7#. In discrete time, a newly excited CA element is assign
a dimensionless phaseT̂5T/Dt50. In this case, the contri
bution of these elements to the integral in Eq.~19! is simply
D x̂2, whereD x̂ is the element size in units ofR. This mag-
nitude clearly exceeds the contribution (12ĝD x̂/ ĉ0)D x̂2 ob-
tained when time is approximated as being continuous. M
importantly, when the front shift in one time steps excee
half of the interaction radiusR ~low thresholds!, the model
does not ‘‘feel’’ the recovery effects at all since all elemen
in the interaction circle will have phasesT̂50. To correct for
this discretization artifact in the simulations, each elemen
source intensity is computed via the express
er

v.
the

x-
h
ve

l

-
r
-
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t
d
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s

’s
n

S512ĝ(T̂1 1
2 ). For the high thresholds (K̂ nearp) shown

in Fig. 9, this adequately adjusts the model behavior to c
respond to the theoretical values obtained by treating tim
continuous~though the knee points do not exactly coincide!.
On the other hand, for low thresholds (K̂,p/2), the CA
realization of the continuous time behavior is not as go
quantitatively~but the dependence of the speed ong is still
physically sensible!. In Fig. 18 the bold curves are the solu
tions of Eq.~19!, while the dotted curves correspond to th
special case where the integrand is not dependent on
phase, but given by the constantS512ĝ/2. The exact cor-
respondence of the simulation points with the dotted cu
for the smallest threshold is because in this case the phaT̂
of every element inside the circle is zero. Thus, even at h
excitabilities the CA model gives physically reasonable b
havior and is predictive. For most cases of interest@7#, the
threshold valuesK̂ required to adjust to specific RDE sys
tems exceedp/2 and the solutions of Eq.~19! adequately
describe the behavior of the CA model.

FIG. 18. Same as Fig. 9, but for low excitation thresholdsK̂

~high excitabilities!. The bold curves are the stable branches oĉ

5 ĉ(ĝ) according to Eq.~20! and the dotted curves correspond
the solutions of Eq.~19! for the special choice ofS as a constant,

S512ĝ/2. At the lowest threshold value shown, all contributin
excited elements in the neighborhood of a given element hav

dimensionless phase coordinateT̂50 and thus the model canno
‘‘feel’’ the source falloff due to recovery. In such cases, the plan
wave speeds are given by the dotted curves.
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